TURBOJET MOTORLAR İÇİN PERFORMANS DEĞERLENDİRME PARAMETRELERİ
Son yıllarda havacılık sanayi ve havayolu ulaşımı her geçen gün hızla büyüme göstermekte ve ilerlemektedir. Bu durum hem hava araçlarındaki enerji tüketiminin hem de çevresel etkilerinin artışına yol açmaktadır. Dolayısıyla, başta uçaklar olmak üzere pek çok hava aracında kullanılan turbojet motorlarının performansları irdelenmesi gereken bu konudur. Geliştirilmekte olan bir turbojet motorun performans değerlendirmesi neticesinde gerçek çalışma koşulları ile tasarım aşamasında öngörülen performans kıyaslanabilmektedir. Diğer yandan işletilmekte olan bir turbojet motor için kullanılan performans değerlendirme parametreleri söz konusu motorun bakım ve revizyon gereksinimini ortaya koyabilmektedir. Bu çalışmada sunulan performans değerlendirme parametreleri ayrıca bir turbojet motor için belirlenmiştir. İncelenen turbojet motor için özgül yakıt tüketimi 3,916.10-5 kg.N-1.s-1 olarak bulunmuştur. Diğer yandan motora ait diğer performans parametreleri olan itki verimi, ısıl verimi toplam verimi ve ekserji verimi sırasıyla %57, %45, %25 ve %8 olarak belirlenmiştir.
PERFORMANCE EVALUATION PARAMETERS FOR TURBOJET ENGINES
In the last decade Aviation industry and air transportation has been growing rapidly and advances day by day. It yields increase of both energy consumption and environmental impact of the aerial vehicles. So that, the performance of the turbojet engines being used to power many aerial vehicles, particularly aircrafts, is an essential issue to be treated. As a result of performance assessment of a newly developed turbojet engine actual operating and on-design performance can be compared. On the other hand evaluating a turbojet engine in service may reveal the maintenance and revision requirement of the engine. In the current study, introduced performance evaluation parameters are also determined for a turbojet engine. Thrust specific fuel consumption of the engine under question is found to be 3,916.10-5 kg.N-1.s-1 whereas propulsion efficiency, thermal efficiency, overall efficiency and exergy efficiency are calculated to be 57%, 45%, 25% and 8% respectively
___
- Çoban, K., Çolpan, C.Ö., Karakoç, T.H., (2016). Bir Helikopter Motorunun Enerji ve Ekserji Analizi. Sürdürülebilir Havacılık Araştırmaları Dergisi, 1, 27-39.
- Ekici, S., Altuntas, O., Açıkkalp, E., Sogut, M. Z., Karakoc, T.H., (2016). Assessment of thermodynamic performance and exergetic sustainability of turboprop engine using mixture of kerosene and methanol, International Journal of Exergy, 19, 295-314.
- El-Sayed, A.F., (2008). Aircraft propulsion and gas turbine engines. CRC Press.
- Gunston, B., (2006). The development of jet and turbine aero engines, 4th Ed., Haynes
Publishing.
- Jiang, J., (2015). A factor decomposition analysis of transportation energy consumption and related policy implications, IATSS Research, 38, 142-148.
- Mattingly, J.D., (2006). Elements of propulsion: gas turbines and rockets. American Institute of Aeronautics and Astronautics Publication.
- Mendez, C. J., Parthasarathy, R.N., Gollahalli, S.R., (2014). Performance and emission characteristics of butanol/Jet A blends in a gas turbine engine, Applied Energy, 118, 135-140.
- Onal, O., Turan, O., (2016). Calculation and Comparison of a Turbofan Engine Performance Parameters with Various Definitions. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 10, 1677-1681.
- Şöhret, Y., Dinç, A., Karakoç, T.H., (2015). Exergy analysis of a turbofan engine for an unmanned aerial vehicle during a surveillance mission, Energy, 93, 716-729.
- Şöhret, Y., Ekici, S., Altuntaş, Ö., Hepbasli, A., Karakoç, T. H., (2016). Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review, Progress in Aerospace Sciences, 83, 57-69.
- Şöhret, Y., Karakoç, T.H., (2014). Gaz Türbinli Uçak Motorlarının Termodinamik Modellenmesi, Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 1, 29-36.
- Şöhret, Y., Sogut, M. Z., Karakoc, T. H., Turan, O., 2016. Customised application of exergy analysis method to PW120A turboprop engine for performance evaluation, International Journal of Exergy, 20, 48-65.
- Turan, Ö., Karakoç, T. H., (2009). Ardyanmalı Ve Ayrık Akışlı Turbofanlarda Fan Basınç Oranı Ve Bypass Oranıyla Toplam Verimin Değişiminin İncelenmesi, Havacılık ve Uzay Teknolojileri Dergisi, 4, 67-76.
- Turan, Ö., Orhan, İ., Karakoç, T.H., (2008). Yüksek Bypasslı Turbofan Motorlarının Tasarım Noktası Analizleri, Havacılık ve Uzay Teknolojileri Dergisi, 3, 1-8.
- US EIA, (2016). International Energy Outlook 2016 With Projections to 2040, U.S. Energy Information Administration Press.
- Utlu, Z., Hepbaşlı, A., (2006). Assessment of the energy utilization efficiency in the Turkish transportation sector between 2000 and 2020 using energy and exergy analysis method, Energy Policy, 34, 1611-1618.
- Whittle, F., (1945). The first james clayton lecture: the early history of the whittle jet
propulsion gas turbine, Proc. Inst. Mech. Eng., 152, 419–435.