4-AMİNO-2-METİL-7(TRİFLOROMETİL)KİNOLİN MOLEKÜLÜNÜN BAZI ÖZELLİKLERİNİN DENEYSEL VE TEORİK SPEKTROSKOPİK YÖNTEMLERLE İNCELENMESİ

Bu çalışmada, 4-amino-2-metil-7(triflorometil)kinolin molekülünün (Kısaltma. AM7TFMQ) teorik hesaplamaları B3LYP yöntemi ve cc-pVDZ ve 6-311G(d,p) temel setleri kullanılarak Yoğunluk Fonksiyonu Teorisi (DFT) yazılımı olan Gaussian09 programında yapılmıştır. Bu hesaplamalar molekülün gaz fazında yapıldı. AM7TFMQ molekülünün en kararlı yapısını bulmak için Gaussian09 paket programında yer alan teorik yöntemler kullanıldı. Molekülün harmonik titreşim frekansları, aynı programda benzer yöntemler ve temel setlerkullanılarak hesaplanmıştır. Hesaplanan bu frekanslar ölçeklendi. Daha sonra deneysel karşılaştırma için Kızılötesi ve Raman spektroskopi teknikleri kullanılmıştır. Bu titreşim modları, TED analizine dayalı SQM programı kullanılarak 6-311G(d,p) temel setine göre çizilmiştir. Hesaplanan bu frekansların gözlenen değerlerle oldukça uyumlu olduğu görülmüştür. AM7TFMQ molekülünün en yüksek enerjili moleküler orbital (HOMO) ve en düşük enerjili boş moleküler orbital (LUMO) enerjileri tespit edildi. Moleküler orbitallerdeki geçişlerin molekül içindeki yük transferlerinden dolayı meydana geldiği söylenebilir. Ek olarak, AM7TFMQ molekülünün moleküler elektrostatik potansiyel (MEP) haritaları DFT yöntemi ile çizildi. Dimetil sülfoksit çözeltisi içinde NMR spektrumu alınarak deneysel 1H ve 13C kimyasal kaymaları gözlemlendi. Bu kaymalar teorik olarak, atomik orbital (GIAO –The Gauge Invariant Atomic Orbitaller) koruyucu tensörleri içeren gösterge kullanılarak hesaplandı. Deneysel ve teorik NMR sonuçlarımız oldukça uyumludur.

INVESTIGATION OF SOME PROPERTIES OF 4-AMINO-2-METHYL-7(TRIFLUOROMETHYL)QUINOLINE MOLECULE BY EXPERIMENTAL AND THEORETICAL SPECTROSCOPIC METHODS

In this study, the theoretical calculations of the 4-amino-2-methyl-7(trifluoromethyl)quinoline molecule (Abbr. AM7TFMQ) were made using the B3LYP method and the basis sets cc-pVDZ and 6-311G(d,p) in Gaussian09 program, which is a Density Function Theory (DFT) software. These calculations were made in the gas phase of the molecule. To find the most stable conformation of the AM7TFMQ molecule, the theoretical methods included in the Gaussian09 package program were used. Harmonic vibration frequencies of the molecule were calculated using similar methods and basis sets in the same program. These calculated frequencies were scaled. Then, Infrared and Raman spectroscopy techniques were used for experimental comparison. These vibrational modes were plotted on the 6-311G(d,p) basis set using the SQM program based on TED analysis. It has been observed that these calculated frequencies are quite compatible with the observed values. The highest energy occupied molecular orbital (HOMO) and the lowest energy unoccupied molecular orbital (LUMO) energies of the AM7TFMQ molecule were detected. It can be said that the transitions in these molecular orbitals occur due to the charge transfers in the molecule. Additionally, the molecular electrostatic potential (MEP) maps of the AM7TFMQ molecule were draw by the DFT method. The experimental 1H and 13C chemical shifts were observed by taking NMR spectrum in dimethyl sulfoxide solution. These shifts were theoretically calculated using gauge including atomic orbital (GIAO–The Gauge Invariant Atomic Orbitals) shielding tensors. Our experimental and theoretical NMR results are highly compatible.

___

  • [1] Eswaran S, Adhikari AV, Shetty NS. Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1,2,4-triazole moiety. Eur J Med Chem. 2009;44:4637–47.
  • [2] Keshk EM, El-Desoky SI, Hammouda MAA, Adbel-Rahman AH, Hegazi AG. Phosphorus Synthesis and Reactions of Some New Quinoline thiosemicarbazide derivatives of potentional biological activity. Sulfur and Silicon, 2008;183:1323–43.
  • [3] Kumru M, Küçük V, Kocademir M. Determination of structural and vibrational properties of 6-quinolinecarboxaldehyde using FT-IR, FT-Raman and Dispersive-Raman experimental techniques and theoretical HF and DFT (B3LYP) methods. Spectrochim Acta A. 2012;96:242–51.
  • [4] Kumru M, Küçük V, Kocademir M, Alfanda HM, Altun A. and Sarı L. Experimental and theoretical studies on IR, Raman, and UV–Vis spectra of quinoline-7-carboxaldehyde. Spectrochim Acta A. 2015;134:81–89.
  • [5] Shoair AF, El-Bindary AA, El-Sonbati AZ, Younes RM. Stereochemistry of New Nitrogen Containing Heterocyclic Aldehydes. III. Novel Bis-Bidentate Azodye Compounds. Polish J Chem. 2000;74:1047–53.
  • [6] Khan KM, Zaify ZS, Khan ZA, Ahmed M, Saeed M, Schick M, et al. Syntheses and Cytotoxic, Antimicrobial, Antifungal and Cardiovascular Activity of New Quinoline Derivatives. Arzneim Forsch/Drug Res. 2000;50:915–24.
  • [7] Deady LW, Desneres J, Kaye AJ. Positioning of the Carboxamide Side Chain in 11-Oxo-11H-indeno[1,2-b]quinolinecarboxamide Anticancer Agents: Effects on Cytotoxicity. Bioorg Med Chem. 2001; 9(2):445–52.
  • [8] Dube D, Blouin M, Brideau C, Chan CC, Desmarais S, Ethier D, Falgueyret JP, et al. Quinolines as potent 5-lipoxygenase inhibitors: Synthesis and biological profile of L-746,530. Bioorg Med Chem Lett. 1998;8(10):1255–60.
  • [9] Gupta R, Gupta AK, Paul S. Microwave-assisted synthesis and biological activities of some 7/9-substituted-4-(3-alkyl/aryl-5,6-dihydro-s-triazolo[3,4-b][1,3,4]thiadiazol-6-yl)tetrazolo[1,5-a] quinolines. Indian J Chem. 2000;39(B):847–52.
  • [10] Tewari S, Chauhan PM, Bhaduri AP, Fatima N, Chatterjee RK. Syntheses and antifilarial profile of 7-chloro-4-(substituted amino)quinolines : a new class of antifilarial agents. Bioorg Med Chem Lett. 2000;10(13):1409–12.
  • [11] Fujita M, Chiba K, Tominaga Y, Katsuhiko H. 7-(2-Aminomethyl-1-azetidinyl)-4-oxoquinoline-3-carboxylic Acids as Potent Antibacterial Agents : Design, Synthesis, and Antibacterial Activity. Chem Pharm Bull. 1998;46:787–96.
  • [12] Kidwai M, Bhushan KR, Sapra P, Saxena RK, Gupta R. Alumina-supported synthesis of antibacterial quinolines using microwaves. Bioorg Med Chem. 2000;8(1): 69–72.
  • [13] Go ML, Nigam TL, Tan ALC, Kuaha K, Wilairat P. Structure-activity relationships of some indolo[3,2-c] quinolines with antimalarial activity. Eur J Pharm Sci. 1998;6(1):19–26.
  • [14] Famin O, Krugliak M, Ginsburg H. Kinetics of inhibition of glutathione-mediated degradation of ferriprotoporphyrin IX by antimalarial drugs. Biochem Pharmacol. 1999;58(1):59–68.
  • [15] Chauhan PMS, Srivastava SK. Present Trends and Future Strategy in Chemotherapy of Malaria. Curr Med Chem. 2001;8(13):1535–42.
  • [16] Özel AE, Büyükmurat Y, Akyüz S. Infrared-spectra and normal-coordinate analysis of quinoline and quinoline complexes. J Mol Struct. 2001;565–566:455-62.
  • [17] Rosenberg E, Rokhsana D, Nervi C, Gobetto R, Milone L, Viale A, et al. Synthesis, Reduction Chemistry, and Spectroscopic and Computational Studies of Isomeric Quinoline carboxaldehyde Triosmium Clusters. Organometallics 2004;23(2):215–23.
  • [18] Ali MA, Mirza AH, Hamid MHSA, Bernhardt PV. Diphenyltin(IV) complexes of the 2-quinolinecarboxaldehyde Schiff bases of S-methyl- and S-benzyldithiocarbazate (Hqaldsme and Hqaldsbz): X-ray crystal structures of Hqaldsme and two conformers of its diphenyltin(IV) complex. Polyhedron. 2005;24(3):383–90.
  • [19] Sertbakan TR. Structure Spectroscopic and Quantum Chemical Investigations of 4-Amino-2-Methyl-8-(Trifluoromethyl)Quinoline. Celal Bayar University Journal of Science. 2017;13(4): 851–61.
  • [20] Pulay P, Baker J, Wolinski K. Green Acres Road Suite A Fayettevile. Arkansas 72703: USA; 2013.
  • [21] Ditchfield R. Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility. J Chem Phys. 1972;56:5688–91.
  • [22] Wolinski K, Hinton JF, Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc. 1990;112(23):8251–60.
  • [23] Petersilka M, Gossmann UJ, Gross EKU. Excitation Energies from Time-Dependent Density-Functional Theory. Phys Rev Lett. 1996;76:1212–15.
  • [24] Karabacak M, Sinha L, Prasad O, Cinar Z, Cinar M. The spectroscopic (FT-Raman, FT-IR, UV and NMR), molecular electrostatic potential, polarizability and hyperpolarizability, NBO and HOMO–LUMO analysis of monomeric and dimeric structures of 4-chloro-3,5-dinitrobenzoic acid. Spectrocim Acta A. 2012; 93:33–46.
  • [25] Bauernschmitt R, Ahlrichs R, Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett. 1996;256(4-5):454–64
  • [26] Jamorski C, Casida ME, Salahub DR. Dynamic polarizabilities and excitation spectra from a molecular implementation of time‐dependent density‐functional response theory: N2 as a case study. J Chem Phys. 1996;104:5134–47.
  • [27] Kurban M, Gündüz B, Göktaş F. Experimental and theoretical studies of the structural, electronic and optical properties of BCzVB organic material. Optik. 2019;182:611–17.
  • [28] Kurban M. Electronic structure, optical and structural properties of Si, Ni, B and N-doped a carbon nanotube: DFT study. Optik. 2018;172:295–301
  • [29] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheesemen JR. et al. Gaussian09 revision A2. Wallingford CT: Gaussian Inc; 2009.
  • [30] Arjunan V, Saravanan I, Ravindran P, Mohan S. Ab initio, density functional theory and structural studies of 4-amino-2-methylquinoline. Spectrochim Acta A. 2009;74/2:375 – 84.
  • [31] Merrick JP, Moran D, Radom L. An Evaluation of Harmonic Vibrational Frequency Scale Factors. J Phys Chem A. 2007;111-45:11683–700.
  • [32] Varsayni G. Assignments of Vibrational spectra of Seven Hundred benzene derivatives Vol:1-2: Adamm Hilger; 1974.
  • [33] Fu A, Du D, Zhou Z. Density functional theory study of vibrational spectra of acridine and phenazine. Spectrochim Acta A. 2003;59(2):245–53.
  • [34] Karabacak M, Kurt M, Ataç A. Experimental and theoretical FT‐IR and FT‐Raman spectroscopic analysis of N1‐methyl‐2‐chloroaniline. J Phys Org Chem. 2009;22(4):312–30.
  • [35] Sas EB, Kurt M, Karabacak M, Poiyamozdi A, Sundaraganesan N. FT-IR, FT-Raman, dispersive Raman, NMR spectroscopic studies and NBO analysis of 2-Bromo-1H-Benzimidazol by density functional method. J Mol Struct. 2015;1081:506-18.
  • [36] Sundaraganesan N, Saleem H, Mohan S. Vibrational spectra, assignments and normal coordinate analysis of 3-aminobenzyl alcohol. Spectrochim Acta A. 2003;59: 2511–17.
  • [37] Thilagavathi G, Arivazhagan M. Density functional theory calculation and vibrational spectroscopy study of 2-amino-4,6-dimethyl pyrimidine (ADMP). Spectrochim Acta A. 2011; 79: 389–95
  • [38] Shanmugam R, Sathyanarayana D. Experimental (FT-IR and FT-Raman), electronic structure and DFT studies on 1-methoxynaphthalene. Spectrochim Acta A. 1984;40:757–61.
  • [39] Spire A, Barthes M, Kellouai H, De Nunzio G. Far-infrared spectra of acetanilide revisited. Physics D. 2000;137:392–401.
  • [40] Panicker CY, Varghese HT, Thansani T. Spectroscopic studies and Hartree-Fock ab initio calculations of a substituted amide of pyrazine-2-carboxylic acid - C16H18ClN3O. Turk J Chem. 2009;33:633–46.
  • [41] Karabacak M, Şahin E, Çınar M, Erol I, Kurt M. X-ray, FT-Raman, FT-IR spectra and ab initio HF, DFT calculations of 2-[(5-methylisoxazol-3-yl)amino]-2-oxo-ethyl methacrylate. J Mol Struct. 2008; 886:148–57.
  • [42] Chesnut D, Phung C. Nuclear magnetic resonance chemical shifts using optimized geometries. J Chem Phys. 1989; 91:6238–45.
  • [43] Diego MG, Defonsi Lestard ME, Estevez-Hernandes O, Duque J, Reguera E. Quantum chemical studies on molecular structure, spectroscopic (IR, Raman, UV–Vis), NBO and Homo–Lumo analysis of 1-benzyl-3-(2-furoyl) thiourea., Spectrochim Acta A. 2015;145:553–62.
  • [44] Kavitha E, Sundaraganesan N, Sebastian S, Kurt M. Molecular structure, anharmonic vibrational frequencies and NBO analysis of naphthalene acetic acid by density functional theory calculations. Spectrochim Acta A. 2010;77:612–19.