Samsun Bölgesi’nde Yaşayan Salmo Populasyonlarının Genetik ve Morfometrik Yapısının Belirlenmesi: Karadeniz Bölgesi için Yeni Bir Kayıt

Bu çalışmada, Terme Deresi’ndeki (Samsun-Orta Karadeniz Bölgesi) Salmo sp. populasyonunun genetik ve morfometrik özelliklerinin belirlenmesi amaçlanmıştır. Toplamda 50 örnek morfometrik analizlerde kullanılmıştır ve dijital kumpas kullanılarak örneklerden 31 adet geleneksel morfometrik ölçüm alınmıştır. Morfometrik değerlendirmelere ilave olarak mtDNA (cyt b ve Kontrol Bölgesi) ve nDNA (Gh2c1) gen bölgeleri moleküler çalışmalarda kullanılmıştır. Moleküler çalışmalar için 10 adet örneğin kaudal yüzgeç dokularından DNA elde edilmiştir. Cyt b gen bölgesinin 991 bazlık, Kontrol Bölgesi’nin 974 ve Gh2c1 gen bölgesinin 538 baz çiftlik kısmı elde edilmiştir (Erişim numaraları: MW871594-cyt b, MZ055401-Kontrol Bölgesi ve MZ055402-Gh2c1 bölgesi). Ayrıca GenBank veri tabanından alınmış olan Salmo türleri ile Salmo salar (LC012541-Dış grup) filogenetik analizlerde kullanılmıştır. Bu çalışmadan elde edilen sonuçlara göre Karadeniz Bölgesi için yeni bir kayıt olan Salmo fahrettini moleküler ve morfometrik analizler ile tanımlanmıştır.

Determination of Morphometric and Genetic Structure in Salmo Populations Inhabiting Samsun Province: A New Record for Black Sea Region

Bu çalışmada, Terme Deresi’ndeki (Samsun-Orta Karadeniz Bölgesi) Salmo sp. populasyonunun genetik ve morfometrik özelliklerinin belirlenmesi amaçlanmıştır. Toplamda 50 örnek morfometrik analizlerde kullanılmıştır ve dijital kumpas kullanılarak örneklerden 31 adet geleneksel morfometrik ölçüm alınmıştır. Morfometrik değerlendirmelere ilave olarak mtDNA (cyt b ve Kontrol Bölgesi) ve nDNA (Gh2c1) gen bölgeleri moleküler çalışmalarda kullanılmıştır. Moleküler çalışmalar için 10 adet örneğin kaudal yüzgeç dokularından DNA elde edilmiştir. Cyt b gen bölgesinin 991 bazlık, Kontrol Bölgesi’nin 974 ve Gh2c1 gen bölgesinin 538 baz çiftlik kısmı elde edilmiştir (Erişim numaraları: MW871594-cyt b, MZ055401-Kontrol Bölgesi ve MZ055402-Gh2c1 bölgesi). Ayrıca GenBank veri tabanından alınmış olan Salmo türleri ile Salmo salar (LC012541-Dış grup) filogenetik analizlerde kullanılmıştır. Bu çalışmadan elde edilen sonuçlara göre Karadeniz Bölgesi için yeni bir kayıt olan Salmo fahrettini moleküler ve morfometrik analizler ile tanımlanmıştır.

___

  • Alp, A. & Kara, C. (2004). Length, weight and conditıon factors of the native brown trouts (Salmo trutta macrostigma Dumeril, 1858 and Salmo platycephalus Behnke, 1968) in the Ceyhan, Seyhan and Euphrates basins. EgeJFAS. 21, 9-15. (Article in Turkish).
  • Bagenal, T.B. & Tesch, F.W. (1978). Age and growth, in Bagenal T, Methods for assessment of fish production in freshwaters. Blackwell Science Publications, 101-136, Oxford.
  • Banarescu, P., 1991. Zoogeography of Fresh Waters, Vol. 2. Wiesbaden: AULA-Verlag.
  • Bardakci, F., Degerli, N., Ozdemir, O. & Basibuyuk, H.H. (2006). Phylogeography of the Turkish brown trout Salmo trutta L.: mitochondrial DNA PCR‐RFLP variation. Journal of Fish Biology, 68(A), 36-55.
  • Bardakci, F., Tanyolac, J., Akpinar, M.A. & Erdem, U. (1994). Morphological comparison of trout (Salmo trutta L., 1766) populations caught from streams in Sivas. Turkish Journal of Zoology, 18, 1–6.
  • Behnke, R. J. (1968). A new subgenus and species of trout, Salmo (Platysalmo) platycephalus, from southcentral Turkey, with comments on the classification of the subfamily Salmoninae. Mitt. Hamburg. Zool. Mus. Inst., 66, 1-15.
  • Bektas, Y., Aksu, I., Kaya, C., Baycelebi, E., Küçük F. & Turan D. (2020). Molecular systematics and phylogeography of the genus Alburnus Rafinesque, 1820 (Teleostei, Leuciscidae) in Turkey. Mitochondrial DNA Part A, 31(7), 273-284.
  • Bernatchez, L. (2021). The evolutionary history of browntrout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution, 55, 351–379.
  • Bernatchez, L., Guyomard, R. & Bonhomme, F. (1992). DNA sequence variation of the mitochondrial control region among geographically and morphologically remote European brown trout Salmo trutta populations. Molecular Ecololgy, 1, 161–173.
  • Berrebi, P., Barucchi, V.C., Splendiani, A., Muracciole, S., Sabatini, A., Palmas, F., Tougard, C., Arculeo, M., & Marić, S. (2019). Brown trout (Salmo trutta L.) high genetic diversity around the Tyrrhenian Sea as revealed by nuclear and mitochondrial markers. Hydrobiologia, 826 (1), 209-231.
  • Cadrin, S.X. (2000). Advances in morphometric identification of fisheries stocks. Reviews in Fish Biology and Fisheries, 10, 91-112.
  • Chen, H.L., Shen, K.N., Chang, C.W., Iizuka, Y. & Tzeng, W.N. (2008). Effects of water temperature, salinity and feeding regimes on metamorphosis, growth and otolith Sr: Ca ratios of Megalops cyprinoides leptocephali. Aquatic Biology, 3 (1), 41-50.
  • Çiçek, E., Sungur, S. & Fricke, R., 2020. Freshwater lampreys and fishes of Turkey; a revised and updated annotated checklist 2020. Zootaxa, 4809 (2), 241-270.
  • Crête-Lafrenière, A., Weir, L.K. & Bernatchez, L. (2012). Framing the Salmonidae family phylogenetic portrait: a more complete picture from increased taxon sampling. PloS ONE, 7 (10), e46662.
  • Delling, B., Sabatini, A., Muracciole, S., Tougard, C. & Berrebi, P. (2020). Morphologic and genetic characterization of Corsican and Sardinian trout with comments on Salmo taxonomy. Knowl Manag Aquat Ecosyst, 421(21).
  • Dunn, N.R., O’Brien, L.K. & Closs, G.P. (2020). Phenotypically induced intraspecific variation in the morphological development of wetland and stream Galaxias gollumoides McDowall and Chadderton. Diversity, 12 (6), 220.
  • Endo, C. & Watanabe, K. (2020). Morphological variation associated with trophic niche expansion within a lake population of a benthic fish. PLoS ONE, 15 (4), e0232114.
  • Felsenstein, J., 1993. Phylogeny Inference Package (PHYLIP). Version 3.5. University of Washington, Seattle.
  • Guinand, B., Oral, M. & Tougard, C. (2021). Brown trout phylogenetics: a persistent mirage towards (too) many species. Journal of Fish Biology, 1-10.
  • Guindon, S. & Gascuel, O. (2003). A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology, 52, 696-704.
  • Gür, H. (2016). The Anatolian diagonal revisited: Testing the ecological basis of a biogeographic boundary. Zoology in the Middle East, 62 (3), 189-199.
  • Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
  • Hewitt, G.M. (2004). The structure of biodiversity–insights from molecular phylogeography. Frontier in Zoology, 1(1), 1-16.
  • Huson, D.H. & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254-267.
  • Kalayci, G., Ozturk, R.C., Capkin, E. & Altinok, I. (2018). Genetic and molecular evidence that brown trout Salmo trutta belonging to the Danubian lineage are a single biological species. Journal of Fish Biology, 93 (5), 792-804.
  • Kanjuh, T., Marić, A., Piria, M., Špelić, I., Maguire, I. & Simonović, P. (2020). Diversity of brown trout, Salmo trutta (Actinopterygii: Salmoniformes: Salmonidae), in the danube river basin of croatia revealed by mitochondrial DNA. Acta Ichthyologica et Piscatoria, 50 (3), 291-300.
  • Kottelat, M. (1997). European freshwater fishes: a heuristic checklist of the frshwater fishes of Europe (exclusive of former USSR), with an introduction for non-systematists and comments on nomenclature and conservation. Biologia, 52, 1–271.
  • Kottelat, M. & Freyhof, J. (2007). Handbook of European freshwater fishes. Kottelat, Cornol and Freyhof, Berlin, xiv + 646 p
  • Li, D., Kang, D., Yin, Q., Sun, X. & Liang, L. (2007). Microsatellite DNA marker analysis of genetic diversity in wild common carp (Cyprinus carpio L.) populations. Journal of Genetics and Genomics, 34, 984-993.
  • Librado, P. & Rozas, J. (2009). DnaSP v.5: A software for comprehensive analysis for DNA polymorphism data. Bioinformatics, 25, 1451-1452.
  • Loy, A., Ciccotti, E., Ferrucci L. & Cataudella, S. (1996). An application of automated feature extraction and geometric morphometrics: temperature-related changes in body form of Cyprinus carpio juveniles. Aquacultural Engineering, 15 (4), 301-311.
  • Mangit, F. & Yerli, S.V. (2018). Systematic evaluation of the genus Alburnus (Cyprinidae) with description of a new species. Hydrobiologia, 807, 297-312.
  • Mayr, E. (1942). Systematics and the origin of species. New York: Columbia University Press.
  • Mohadasi, M., Eagderi, S., Shabanipour, N., Hosseinzadeh, M.S., AnvariFar, H. & Khaefi, R. (2014). Allometric body shape changes and morphological differentiation of Shemaya, Alburnus chalcoides (Guldenstadf, 1772), populations in the southern part of Caspian Sea using Elliptic Fourier analysis. IJAB, 2 (3), 164-171.
  • Ninua, L., Tarkhnishvili, D. & Gvazava, E. (2018). Phylogeography and taxonomic status of trout and salmon from the Ponto‐Caspian drainages, with inferences on European Brown Trout evolution and taxonomy. Ecology and Evolution, 8, 2645-2658.
  • Oliveira, J.M., Ferreira, A.P. & Ferreira, M.T. (2002). Intrabasin variations in age and growth of Barbus bocagei populations. Journal of Applied Ichthyology, 18, 134–139.
  • Özen, N. (2013). Molecular phylogeny of brown trouts (Salmo trutta L.) in Turkey. PhD, Adnan Menderes University, Aydın, Turkey.
  • Özpiçak, M. & Polat, N. (2019). Determination of genetic structure in Barbus tauricus Kessler, 1877 populations inhabiting a few streams along the Black Sea Region (Turkey) inferred from mtDNA Cytochrome b gene sequence analysis. EgeJFAS, 36 (1), 1-11.
  • Pakkasmaa, S. & Piironen, J. (2000). Water velocity shapes juvenile salmonids. Evolutionary Ecology, 14, 721-730.
  • Perea, S., Böhme, M., Zupančič, P., Freyhof, J., Šanda, R., Özuluğ, M., Abdoli, A. & Doadrio, I. (2010). Phylogenetic relationships and biogeographical patterns in Circum-Mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data. BMC Evolutionary Biology, 10 (1), 1-27.
  • Posada, D. (2008). jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution, 25, 1253–1256.
  • Rossi, A.R., Petrosino, G., Milana, V., Martinoli, M., Rakaj, A. & Tancioni L. (2019). identification of native populations of Mediterranean brown trout Salmo trutta L. complex (Osteichthyes: Salmonidae) in central Italy. The European Zoological Journal, 86 (1), 424-431.
  • Saitou, N. & Nei, M. (1987). The neighbor-joining method-a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.
  • Şengör, A.M.C., Altiner, D., Cin, A., Ustaomer, T. & Hsu, K. J. (1998). Origin and assembly of the Tethyside orogenic collage at the expence of Gondwana Land. In Gondwana and Tethys (Audley-Charles MG, Hallam, A, eds), New York: Oxford University Press.
  • Segherloo, I. H., Freyhof, J., Berrebi, P., Ferchaud, A. L., Geiger, M., Laroche, J., Levin, B. A., Normandeau, E. & Bernatchez, L. (2021). A Genomic Perspective on an Old Question: Salmo trouts or Salmo trutta (Teleostei: Salmonidae)? Molecular Phylogenetics and Evolution, 2021, e107204.
  • Sušnik, S., Knizhin, I., Snoj, A. & Weiss, S. (2006). Genetic and morphological characterization of a Lake Ohrid endemic, Salmo (Acantholingua) ohridanus with a comparison to sympatric Salmo trutta. Journal of Fish Biology, 68, 2-23.
  • Swofford, D.L., 2003. PAUP: Phylogenetic analysis using parsimony (and other methods) Sunderland, MA: Sinauer Associates.
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731-2739.
  • Tougard, C., Justy, F., Guinand, B., Douzery, E. J. & Berrebi, P. (2018). Salmo macrostigma (Teleostei, Salmonidae): nothing more than a brown trout (S. trutta) lineage? Journal of Fish Biology, 93, 302-310.
  • Turan, D., Kottelat, M. & Engin, S. (2014a). Two new species of trouts from the Euphrates drainage, Turkey (Teleostei: Salmonidae). Ichthyological Exploration of Freshwaters, 24 (3), 275–287.
  • Turan, D., Dogan, E., Kaya, C. & Kanyılmaz, M. (2014b). Salmo kottelati, a new species of trout from Alakır stream, draining to the Mediterranean in southern Anatolia, Turkey (Teleostei, Salmonidae). Zookeys, 462, 135–151.
  • Turan, D., Kalaycι, G., Bektaş, Y., Kaya, C. & Baycelebi, E. (2020). A new species of trout from the northern drainages of Euphrates River, Turkey (Salmoniformes: Salmonidae). Journal of Fish Biology, 96 (6), 1454-1462.
  • Turan, D., Kottelat, M., & Engin, S. (2009). Two new species of trouts, resident and migratory, sympatric in streams of northern Anatolia (Salmoniformes: Salmonidae). Ichthyological Exploration of Freshwaters, 20 (4), 333-364.
  • Turan, D., Kottelat, M. & Kaya C. (2017). Salmo munzuricus, a new species of trout from the Euphrates River drainage, Turkey (Teleostei: Salmonidae). Ichthyological Exploration of Freshwaters, 28 (1), 55-63.
  • Turan, D.T., & Bayçelebi, E. (2020). First Record of Salmo pelagonicus Karaman, 1938 (Teleostei: Salmonidae) in the Karamenderes River, Turkey. JAES, 5 (4), 551-555.
  • Uncu, L. (1995). Terme Çayı ile Kocamandere Havzalarında Fiziki Coğrafya Araştırmaları ve Doğal Çevre Sorunları.Ankara Üniversitesi Sosyal Bilimler Enstitüsü, Yüksek Lisans Tezi, Ankara.
  • Von Schalburg, K.R., Yazawa, R., De Boer, J., Lubieniecki, K.P., Goh, B. & Straub, C.A., Koop B.F. (2008). Isolation, characterization and comparison of Atlantic and Chinook salmon growth hormone 1 and 2. BMC Genomics, 9(1), 1-12.
  • Yıldız, R. (2019). Sagittal otolith biometry of Çoruh trout (Salmo coruhensis Turan, Kottelat and Engin, 2010) inhabiting Çam Stream (Artvin, Turkey). Msc, Ondokuz Mayıs University, Samsun, Turkey.
Journal of Anatolian Environmental and Animal Sciences-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2016
  • Yayıncı: Bülent VEREP
Sayıdaki Diğer Makaleler

Bakır oksit nanopartikülleri ve Bakır sülfatın O. niloticus’da Serum Parametreleri ve Serum Enzim Aktiviteleri Üzerine Toksik Etkilerinin Karşılaştırılması

Mustafa TUNÇSOY, Cahit ERDEM

Simmental İneklerinde İklimsel Faktörler ile Soğuk Stresinin Davranış Özelliklerine Etkisi

Akif UYSAL, Emrah KAYGUSUZ, Filiz AKDAĞ

Japon Bıldırcınlarında (Coturnix Coturnix Japonica) Kanatların Arterial Beslenmesi

Zekeriya ÖZÜDOĞRU, Ramazan İLGÜN, Mehmet CAN

Balıklardan İzole Edilen Bazı Bakteriyel Patojenlere Karşı Tannik Asidin Antibakteriyal Etkisinin Belirlenmesi

Neşe TEKİN, Fikri BALTA

Beytepe Göleti’nin Zooplankton Faunası Üzerine Bir Ön Çalışma (Ankara/Turkey)

Meral APAYDIN YAĞCI, Vedat YEGEN, Belgin YOLDAŞ, Tuncay VURAL, Abdulkadir YAĞCI

İnsan ve Koyun Femur Kemiğinin Sonlu Elemanlar Yöntemiyle Karşılaştırılması

Yılmaz GÜVERCİN, Murat YAYLACI

Kentsel Kültürel Miras Alanlarının Kültürel Ekosistem Servisleri Bağlamında Değerlendirilmesi ‘Kayseri-Talas Tarihi Kent Dokusu Örneği’

Aslihan TIRNAKÇI

Nanopartiküler Aşılar

Evrim DÖNMEZ, Hafize Tuğba YÜKSEL DOLGUN, Şükrü KIRKAN

Pülümür Nehri (Tunceli)’ndeki Alburnus mossulensis (Mossul bleak) Heckel, 1843 ‘ün Boy-Ağırlık İlişkisi ve Kondisyon Faktörü

Ebru İfakat ÖZCAN, Osman SERDAR

Sıcaklık Şoku Uygulaması ile Triploid Karadeniz Alabalığı (Salmo trutta labrax) Üretimi ve Kuluçka Performansının Belirlenmesi[*]

Fatma DELİHASAN SONAY, Nadir BAŞÇINAR, Süleyman AKHAN