YARI-HEUSLER NaYSi BİLEŞİĞİNİN BAZI FİZİKSEL ÖZELLİKLERİ : İLK İLKELER ÇALIŞMASI

Yarı-Heusler yapısındaki NaYSi bileşiğinin yapısal, elektronik, elastik ve optik özellikleri ab initio ilkeler yoğunluk-fonksiyonel teori kullanılarak incelenmiştir. Hesaplanan denge örgü sabitleri, mevcut deneysel ve teorik verilerle karşılaştırılmıştır. Elastik parametreler hesaplanmıştır. Elastik sonuçlarımız, bu bileşiğin mekanik olarak kararlı olduğunu kanıtlıyor. Bu bileşiğin yarı iletken olduğu bant aralığından tahmin edilmiştir. Ayrıca, 0-40 eV enerji aralığı için fonon spektrumları ve optik analiz yapılmıştır.

SOME PHYSICAL PROPERTIES OF HALF-HEUSLER COMPOUND NaYSi : FIRST-PRINCIPLES STUDY

The structural, electronic, elastic and optic properties of NaYSi formed in the half-Heusler structure are studied by using ab-initio density-functional theory. The calculated equilibrium lattice constants are compaired with the available experimental and theoretical data. The elastic parameters have calculated. Computed elastic results prove that this compound were mechanically stable. The band gap of this compound predicted to be semiconductor. Further the phonon spectra and optical analysis have been obtained for the energy range of 0–40 eV.

___

  • 1. Nowotny, H., & Bachmayer, K. (1950). Die Verbindungen LiMgP, LiZnP und LiZnAs. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 81(4), 488-496.
  • 2. Kandpal, H. C., Felser, C., & Seshadri, R. (2006). Covalent bonding and the nature of band gaps in some half-Heusler compounds. Journal of Physics D: Applied Physics, 39(5), 776.
  • 3. Mehnane, H., Bekkouche, B., Kacimi, S., Hallouche, A., Djermouni, M., & Zaoui, A. (2012). First-principles study of new half Heusler for optoelectronic applications. Superlattices and Microstructures, 51(6), 772-784.
  • 4. Curtarolo, S., Hart, G. L., Nardelli, M. B., Mingo, N., Sanvito, S., & Levy, O. (2013). The high-throughput highway to computational materials design. Nature materials, 12(3), 191-201.
  • 5. Öğüt, S., & Rabe, K. M. (1995). Band gap and stability in the ternary intermetallic compounds NiSnM (M= Ti, Zr, Hf): A first-principles study. Physical Review B, 51(16), 10443.
  • 6. Kieven, D., Klenk, R., Naghavi, S., Felser, C., & Gruhn, T. (2010). I-II-V half-Heusler compounds for optoelectronics: Ab initio calculations. Physical Review B, 81(7), 075208.
  • 7. Gruhn, T. (2010). Comparative ab initio study of half-Heusler compounds for optoelectronic applications. Physical Review B, 82(12), 125210.
  • 8. Casper, F., Seshadri, R., & Felser, C. (2009). Semiconducting half‐Heusler and LiGaGe structure type compounds. physica status solidi (a), 206(5), 1090-1095.
  • 9. Roy, A., Bennett, J. W., Rabe, K. M., & Vanderbilt, D. (2012). Half-Heusler semiconductors as piezoelectrics. Physical review letters, 109(3), 037602.
  • 10. Kresse, G., & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical review B, 47(1), 558.
  • 11. Kresse, G., & Hafner, J. (1994). Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251.
  • 12. Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, 6(1), 15-50.
  • 13. Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 54(16), 11169.
  • 14. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865.
  • 15. Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized gradient approximation made simple (vol 77, pg 3865, 1996). Physical review letters, 78(7), 1396-1396.
  • 16. Kacimi, S., Mehnane, H., & Zaoui, A. (2014). I–II–V and I–III–IV half-Heusler compounds for optoelectronic applications: Comparative ab initio study. Journal of Alloys and Compounds, 587, 451-458.
  • 17. Fu, H., Li, D., Peng, F., Gao, T., & Cheng, X. (2008). Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures. Computational Materials Science, 44(2), 774-778.
  • 18. Pettifor, D. G. (1992). Theoretical predictions of structure and related properties of intermetallics. Materials science and technology, 8(4), 345-349.
  • 19. Ciftci, Y. O., & Evecen, M. (2018). First principle study of structural, electronic, mechanical, dynamic and optical properties of half-Heusler compound LiScSi under pressure. Phase Transitions, 91(12), 1206-1222.
  • 20. Roy, A. (2011). First-principles study of electromechanical and polar properties in perovskite oxides and half-Heusler semiconductors. Rutgers The State University of New Jersey-NewBrunswick.
  • 21. Togo, A. (2012). Phonopy Manual Release 1.6. 2.