APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS

APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS

Bağlayıcı grup olarak ftalosiyanin halkasına karboksilik asit fonksiyonlandırlmış asimetrik çinko ftalosiyanin (GT4) molekülü daha önce belirtilen prosedürlerimize uygun olarak hazırlnamıştır. Molekül yapısı spektroskopik yöntemler (FT-IR, MALDI-MS, UV-VIS) ile aydınlatılmıştır. Bu çalışmada peripheral pozisyonda heksiltiya ve karboksilik asit grupu içeren ftalosiyanin molekülü sentezlenmiş ve bu grupların OFET performansı üzerine etkileri araştırılmıştır.

___

  • 1. Dong S., Tian H., Huang L., Zhang J., Yan D., Geng Y., & Wang F. (2011). Non-Peripheral Tetrahexyl-Substituted Vanadyl Phthalocyanines with Intermolecular Cofacial π-π Stacking for Solution-Processed Organic Field-Effect Transistors. Advanced Materials, 23(25): 2850–2854.
  • 2. Chaure N. B., Cammidge A. N., Chambrier I., Cook M. J., Ray A. K. (2015). A Tetrabenzotriazaporphyrin Based Organic Thin Film Transistor: Comparison with a Device of the Phthalocyanine Analogue. ECS Journal of Solid-State Science and Technology, 4(4): P3086–P3090.
  • 3. Sirringhaus H. (2005). Device physics of solution‐processed organic field‐effect transistors. Advanced Materials, 17(20), 2411-2425.
  • 4. Lever ABP., Leznoff CC. (1996). Phthalocyanine: properties and applications. Advanced Materials, Vol. 4 p.536.
  • 5. Bottari G., Torre G. de la, Guldi, D.M., Torres T. (2010). Covalent and noncovalent phthalocyanine− carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chemical Reviews, 110, 6768–6816.
  • 6. Canımkurbey B., Taşkan M. C., Demir S., Duygulu, E., Atilla D., Yuksel F. (2020). Synthesis, and Investigation of Electrical Properties of Novel Liquid-Crystal Phthalocyanines bearing triple branched alkylthia chains. New Journal of Chemistry, 44, 7424-7435.
  • 7. Warner M., Din S., Tupitsyn I.S., Morley G.W., Stoneham A.M., Bahçıvan J.A., Wu Z., Fisher A.J., Heutz S., Kay CW., Aeppli G. (2013). Potential for spin-based information processing in a thin-film molecular semiconductor. Nature, 503, 504-508.
  • 8. Forrest S.R. (2004). The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 428,9.
  • 9. Scheinert S,. Paasch G,. Hörselmann I., Herasimovich A. (2010). Low-cost submicrometer organic fieled effect transistors. Advances in Polymer Science, 223,155.
  • 10. Gürol İ., Ahsen V., and Bekaroǧlu Ö. (1994). Synthesis of tetraalkylthio-substituted phthalocyanines and their complexation with Ag I and Pd II. J. Chem. Soc., Dalt. Trans., 0, 497–500.
  • 11. Canlica M., Nyokong T. (2011). Synthesis and photophysical properties of metal free, titanium, magnesium and zinc phthalocyanines substituted with a single carboxyl and hexylthio groups. Polyhedron, 30, 1975–1981.
  • 12. Tunç G., Güzel E., Şişman İ., Ahsen V., Cardenas-J. G. (2019). Effect of new asymmetrical Zn(ii) phthalocyanines on the photovoltaic performance of a dye-sensitized solar cell. New J. Chem., 43, 14390–14401.
  • 13. Tunç G., Albakour M., Ahsen V., Gürek AG. (2019). Peripherally carboxylic acid substituted asymmetric zinc(II) phthalocyanines: Synthesis and photophysicochemical properties. J. Porphyrins and Phthalocyanines, 23, 1355-1364.
  • 14. L. Sun. (2015). Effect of relative nanohole position on colour purity of ultrathin plasmonic subtractive colour filters. Nanotechnology, 26, 30.