Correspondence between steganographic protocols and error correcting codes

Correspondence between steganographic protocols and error correcting codes

In this work we present a correspondence between the steganographic systems and error correcting codes. We propose a new steganographic protocol based on 3-error-correcting primitive BCH codes. We show that this new protocol has much better parameters than protocols which we get from Hamming codes or from the 2-error-correcting primitive BCH codes, for high levels of incorporation.

___

  • [1] E. Assmus, H. Mattson, Some 3–error–correcting BCH codes have covering radius 5, IEEE Trans. Inform. Theory 22(3) (1976) 348–349.
  • [2] R. Crandall, Some notes on steganography, available at http://dde.binghamton.edu/download/ Crandall_matrix.pdf, 1998.
  • [3] J. Fridrich, D. Soukal, Matrix embedding for large payloads, IEEE Trans. Inf. Forensics Security 1(3) (2006) 390–395.
  • [4] T. Helleseth, All binary 3–error–correcting BCH codes of length $2^m-1$ have covering radius 5, IEEE Trans. Inform. Theory 24(2) (1978) 257–258.
  • [5] J. van der Horst, T. Berger, Complete decoding of triple–error–correcting binary BCH Codes, IEEE Trans. Inform. Theory 22(2) (1976) 138–147.
  • [6] F. J. Mac Williams, N. Sloane, The Theory of Error Correcting Codes, Amsterdam, Netherlands, North–Holland, 1966.
  • [7] C. Munuera, Steganography and error–correcting codes, Signal Process. 87(6) (2007) 1528–1533.
  • [8] A. Westfeld, F5—A Steganographic Algorithm, Lecture Notes in Comput. Sci. 2137 (2001) 289–302.