Coretractable modules relative to a submodule
Coretractable modules relative to a submodule
Let $R$ be a ring and $M$ a right $R$-module. Let $N$ be a proper submodule
of $M$. We say that $M$ is $N$-coretractable (or $M$ is coretractable relative to $N$)
provided that, for every proper submodule $K$ of $M$ containing $N$, there is
a nonzero homomorphism $f:M/K\rightarrow M$. We present some conditions
that a module $M$ is coretractable if and only if $M$ is coretractable relative to a submodule $N$. We also provide some examples to illustrate special cases.
___
- [1] A. N. Abyzov, A. A. Tuganbaev, Retractable and coretractable modules, J. Math. Sci. 213(2) (2016)
132–142.
- [2] B. Amini, M. Ershad, H. Sharif, Coretractable modules, J. Aust. Math. Soc. 86(3) (2009) 289–304.
- [3] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer-Verlog, New York, 1992.
- [4] N. O. Ertas, D. K. Tütüncü, R. Tribak, A variation of coretractable modules, Bull. Malays. Math.
Sci. Soc. 41(3) (2018) 1275–1291.
- [5] S. M. Khuri, Endomorphism rings and lattice isomorphisms, J. Algebra 56(2) (1979) 401–408.
- [6] S. M. Khuri, Nonsingular retractable modules and their endomorphism rings, Bull. Aust. Math. Soc.
43(1) (1991) 63–71.
- [7] T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999.
- [8] G. Lee, S. T. Rizvi, C. S. Roman, Dual Rickart modules, Comm. Algebra 39(11) (2011) 4036-4058.
- [9] S. H. Mohamed, B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes
Series 147, Cambridge, University Press, Cambridge, 1990.
- [10] A. R. M. Hamzekolaee, A generalization of coretractable modules, J. Algebraic Syst. 5(2) (2017)
163–176.
- [11] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.
- [12] J. M. Zelmanowitz, Correspondences of closed submodules, Proc. Amer. Math. Soc. 124(10) (1996)
2955–2960.
- [13] J. Žemlicka, Completely coretractable rings, Bull. Iranian Math. 39(3) (2013) 523–528.
- [14] Z. Zhengping, A lattice isomorphism theorem for nonsingular retractable modules, Canad. Math.
Bull. 37(1) (1994) 140–144.
- [15] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq. 7(3) (2000)
305–318.