İmidazolinone-Tolerant Kültür Bitkileri ve Yabancı Ot Mücadelesinde Kullanımı

Yabancı otlar, kültür bitkileriyle su, besin maddesi, ışık ve yer gibi kaynaklar için rekabete girerek zarar oluştururlar. Mücadelesinde, kısa sürede sonuç vermesi ve kullanım kolaylığı gibi avantajları sebebiyle daha çok kimyasal mücadele yöntemi tercih edilmektedir. Ancak yoğun herbisit kullanımı sonucu ortaya çıkan direnç sorunu, selektif herbisitlerin geliştirilmesiyle daha da artmıştır. Özellikle ALS (Asetolaktat sentaz) inhibitörü herbisitlere olan dayanıklılık sorunu ilk sıradadır. Dar ve geniş yapraklı yabancı otlara karşı yaygın olarak ALS inhibitörü herbisit grubundan Sulfonylurea sınıfı içerisinde yer alan aktif maddelerden imidazolinonlar kullanılmaktadır. İmidazolinonlar, düşük dozlarda bile etkili olan çok geniş yabancı ot etki spektrumuna sahip olup hayvanlar, kuşlar, balıklar ve omurgasızlar üzerinde düşük toksisite olması ile nispeten çevresel profile uygun herbisitlerdir. Bu özellikleri, geleneksel üretim teknikleri (transgenik olmayan) ile imidazolinon-tolerant (imi-tolerant) kültür bitkilerin geliştirilmesine olanak sağlamıştır. İmi-tolerant kültür bitkilerinden kasıt, imidazolinon grubu herbisitlere karşı toleranslı bitkilerdir. Bu bitkilerin kullanıldığı üretim alanlarında yabancı otların kontrolü sağlanırken, ürünün zarar görmesini engellemek amaçlanmaktadır. Yabancı otlarla mücadelede düşük maliyet, daha iyi ve etkin kontrol sayesinde tarımsal üretimde verim artış sağlanması gibi avantajları vardır. Ancak imi-tolerant bitkilerin ekimi yapılan alanlarda yoğun herbisit kullanımına bağlı olumsuz çevresel etkiler, kültür bitkisine akraba yabancı ot türlerine gen kaçışı ve buna bağlı olarak dirençli yabancı otların ortaya çıkışı gibi bir takım dezavantajları olabilir. Bu derlemede, imi-tolerant bitkilerin yabancı ot mücadelesinde kullanım avantajları ve dezavantajları tartışılmıştır.

Imidazolinone-Tolerant Crop Plants and Their Use in Weed Control

Weeds cause damage by competing with crops for resources such as water, nutrients, light and space. In its control, chemical control methods are preferred due to its advantages such as short-term results and ease of use. However, the problem of resistance, which arises as a result of intensive use of herbicides, has increased with the development of selective herbicides. In particular, the problem of resistance to ALS (Acetolactate synthase) inhibitor herbicides is in the first place. Imidazolinones, one of the active substances in the sulfonylurea class from the ALS inhibitor herbicide group, are widely used against narrow and broad-leaved weeds. Imidazolinones have a very broad weed spectrum that is effective even at low doses, and are herbicides with a relatively environmental profile, with low toxicity to animals, birds, fish and invertebrates. These features have enabled the development of imidazolinone-tolerant (IMI-tolerant) crops with traditional production (non-transgenic) techniques. IMI-tolerant crops mean that are tolerant to imidazolinone group herbicides. While controlling weeds in the production areas where these crops are used, it is aimed to prevent the product from being damaged. It has advantages such as low cost, better and more effective control of weeds, increasing the yield in agricultural production. However, there may be some disadvantages such as negative environmental effects due to intensive use of herbicides in the areas where IMI-tolerant plants are cultivated, gene escape to weed species related to the cultivated plant and the emergence of resistant weeds accordingly. In this review, the advantages and disadvantages of using IMI-tolerant plants in weed control are discussed.

___

  • Ahmed, Z. H., 2019. Screening of advanced generation lentil mutant genotypes for tolerance to imazamox herbicide /Mercimekte ileri generasyon mutant hatlarda imazamox herbisite dayanıklılığın belirlenmesi. Harran Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi (Basılmış).
  • Aksoy, E., Pekcan, V., 2014. Canavar otları (Orobanche spp., Phelipanche spp.) ve Mücadelesi. Gıda, Tarım ve Hayvancılık Bakanlığı Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü Bitki Sağlığı Araştırmaları Daire Başkanlığı Yayınları, Ankara, 80s.
  • Ali, M. A., Rehman, I., Iqbal, A., Din, S., Rao, A. Q., Latif, A., Husnain, T., 2014. Nanotechnology, a newfrontier in Agriculture. Adv life sci, 1(3), 129-138.
  • Al-Khatib, K., Baumgartner, J. R., Peterson, D. E., Currie, R. S., 1998. Imazethapyr resistance in common sunflower (Helianthus annuus). Weed Science, 403-407.
  • Anonim, 2012. Implementing Integrated Weed Management for Herbicide Tolerant Crops, CropLife International, https://croplife.org/wp-content/uploads/2014/04/Implementing-Integrated-Weed-Management-for-Herbicide-Tolerant-Crops.pdf (Erişim tarihi: 01.11.2021)
  • Anonim, 2017. The guide to nufarm imicrops® herbicides and best management practices. https://cdn.nufarm.com/wp-content/uploads/sites/22/2018/05/06182501/BRimiCrops-2017imiCropsTheGuideToNufarmImiCropsHerbicidesAndBestManagementPractice_WEB_V1.pdf (Erişim tarihi: 09.04.2021)
  • Anonim, 2021a. Weed Technology Volume 12, Issue 4 (October-December) 1998. p. 789. https://wssa.net/wssa/weed/resistance/herbicide-resistance-and-herbicide-tolerance-definitions/ (Erişim tarihi: 25.05.2021)
  • Anonim, 2021b. 10 Imı Tr 029 Hibrit Ayçiçeği Çeşit Üretim Ve Satış Hakkı Teknik Şartnamesi. https://arastirma.tarimorman.gov.tr/ttae/ (Erişim tarihi: 17.04.2021)
  • Anonim, 2021c. Clearfield® Üretim Sistemi, https://www.agro.basf.com.tr/tr/%C3%9Cr%C3%BCnler/Clearfield/Clearfield/ (Erişim tarihi: 01.11.2021).
  • Ball, D. A., Peterson, C. J., 2007. Herbicide tolerance in imidazolinone-resistant wheat for weed management in the Pacific Northwest USA. In Whea tproduction in stressed environments. pp. 243-250.
  • Bonny, S., 2016. Genetically modified herbicide-tolerant crops, weeds, and herbicides: overview and impact. Environmental management, 57(1), 31-48.
  • Bourdineaud, J. P., 2020. Toxicity of the herbicides used on herbicide-tolerant crops, and societal consequences of their use in France. Drug and Chemical Toxicology, 1-24.
  • Casquero, M., Luisoni, A. J., Kiehr, K., Cantamutto, M., 2012. Invasive helianthus interference in an imi sunflower crop. In Proc of 18 th International Sunflower Conference, Mar del Plata, Argentina. pp. 513-518.
  • Chen, L. J., Lee, D. S., Song, Z. P., Suh, H. S., Lu, B. R., 2004. Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Annals of botany, 93(1), 67-73.
  • Devine, M. D., 2005. Why are there not more herbicide‐tolerant crops?. Pest Management Science: formerly Pesticide Science, 61(3), 312-317.
  • Duke, S. O., 2005. Taking stock of herbicide-resistant crops ten years after introduction. Pest Manage Sci 61: 211–218.
  • EFSA (European Food Safety Authority), 2004. Opinion of the Scientific Panel on genetically modified organisms [GMO] on a request from the Commission related to the safety of foods and food ingredients derived from herbicide‐tolerant genetically modified maize NK603, for which a request for placing on the market was submitted under Article 4 of the Novel Food Regulation (EC) No 258/97 by Monsanto. EFSA Journal, 2(3), 9.
  • Felton, W. L., Medd, R. W., Martin, R. J., 1996. An ecological perspective on the use of herbicide tolerant crops in integrated weed management. In Eleventh Australian Weeds Conference Proceedings (Vol. 11, pp. 586-592).
  • Goldburg, R. J., 1992. Environmental concerns with the development of herbicide-tolerant plants. Weed Technology, 6(3), 647-652.
  • Gray, J., Shattuck, J., Bradford, K., 2010. Herbicide Tolerance in Agricultural Crops, Biotechnology for Sustainability, https://ucanr.edu/sites/sbc/files/191417.pdf (Erişim tarihi:06.06.2021)
  • Heap, I., 2021. The International Herbicide-Resistant Weed Database. http://www.weedscience.org/Pages/SOASummary.aspx (Erişim tarihi: 15.12.2021).
  • Kaya, Y., Sahin, S., Beşer, N., 2018. Determining of yield performances of some imi resistant sunflower hybrids in Trakya region, Turkey. The Eurasia Proceedings of Science Technology Engineering and Mathematics, (3), 126-132.
  • Kirkwood R.C., 2002. Herbicide-tolerant crops. In: Naylor REL (ed) Weed management handbook. Blackwell, Oxford, pp 253–279.
  • Knezevic, S. Z., Cassman, K. G., 2003. Use of herbicide‐tolerant crops as a component of an integrated weed management program. Crop Management, 2(1), 1-7.
  • Knezevic, S. Z., 2010. Use of Herbicide-Tolerant Crops as Part of an Integrated Weed Management Program, https://extensionpublications.unl.edu/assets/html/g1484/build/g1484.htm (Erişim tarihi: 10.06.2021)
  • Lamichhane, J. R., Devos, Y., Beckie, H. J., Owen, M. D., Tillie, P., Messéan, A., Kudsk, P., 2017. Integrated weed management systems with herbicide-tolerant crops in theEuropean Union: lessons learnt from home and abroad. Critical reviews in biotechnology, 37(4), 459-475.
  • Langevin S. A., K. Clay, Grace, H. B., 1990. The incidence an deffects of hybridization between cultivated rice and its related weed, redrice (Oryza sativa L.). Evolution 44: 1000-1008.
  • Malidza, G., Vrbnicanin, S., Bozıc, D., Jocıc, S., 2016. Integrated weed management in sunflower: challenges and opportunities. ISC 2016, 90.
  • Monks, C. D., Wilcut, J. W., Richburg, J. S., Hatton, J. H., Patterson, M. G., 1996. Effect of AC 263,222, imazethapyr, and nicosulfuron on weed control and imidazolinone-tolerant corn (Zea mays) yield. Weed technology, 822-827.
  • Naidu, V. S. G. R., Ranganath, A. R. G., 2011. Herbicide Tolerant Crops Emerging Tool in Weed Management. pp. 173, 173.
  • Newhouse, K. E., Shaner, D. L., Wang, T., Fincher, R., 1990. Genetic modification of crop responses to imidazolinone herbicides.
  • Oerke, E., 2006. Crop losses to pests. The Journal of Agricultural Science, 144(1), 31-43.
  • Peerzada, A. M., O’Donnell, C., Adkins, S., 2019. Optimizing Herbicide Use in Herbicide-Tolerant Crops: Challenges, Opportunities, and Recommendations. In Agronomic Crops. pp. 283-316.
  • Pfenning, M., Palfay, G., Guillet, T., 2008. The CLEARFIELD® technology–A new broad-spectrum post-emergence weed control system for European sunflower growers. Journal of Plant Diseases and Protection, 21, 649-654.
  • Pfenning, M., Kehler, R., Bremer, H., 2012a. New perspectives for weed control in winter oil seed rape due to the introduction of the Clearfield® system. Julius-Kühn-Archiv, 2(434), 435-442.
  • Pfenning, M., Tan, S., Perez-Brea, J., 2012b. Weed control in Clearfield-Plus sunflowers with superior herbicide solutions. In Proc XVIII Sunflower Conf., Mar del Plata-Balcarce, Argentina. pp. 535-538.
  • Powles, S. B., Shaner, D. L., 2001. Herbicide resistance and world grains. Crc Press. Prakash, N. R., Chaudhary, J. R., Tripathi, A., Joshi, N., Padhan, B. K., Yadav, S., Kumar, R., 2020. Breeding for herbicide tolerance in crops: a review.
  • Reade, J. P. H., Cobb, A. H., 2002. Herbicides: Modes of Action and Metabolism. I: Naylor, REL (red), Weed Management Handbook.
  • Sala, C. A., Bulos, M., Echarte, A. M., Whitt, S., Budziszewski, G., Howie, W., Weston, B., 2008. Development of CLHA-Plus: a novel herbicide tolerance trait in sunflower conferring superior imidazolinone tolerance and ease of breeding. In Proceedings of XVII International Sunflower Conference, Cordoba, Espana. pp. 489-494.
  • Sala, C. A., Bulos, M., Altieri, E., Weston, B., 2012. Response to imazapyr and dominance relationships of two imidazolinone-tolerant alleles at the Ahasl 1 locus of sunflower. Theoretical and Applied Genetics, 124(2), 385-396.
  • Seefeldt S. S., R. Zemetra, F., Youngand, S. Jones.,1998. Production of herbicide-resistance jointed goat grass (Aegilops cylindrica) x wheat (Triticum aestivum) hybrids in the field by natural hybridization. Weed Sci. 46, 632- 634
  • Senior, I. J., Dale, P. J., 2002. Herbicide‐tolerant crops in agriculture: oilseed rape as a case study. Plant Breeding, 121(2), 97-107.
  • Shaner, D. L.,2003. Imidazolinone herbicides. In: Plummer, D., Ragsdalr, N. (ed.): Encyclopedia of Agrochemicals. Pp. 769-784. John Wiley and Sons, Hoboke 2003.
  • Sharkey, S. M., Williams, B. J., Parker, K. M., 2021. Herbicide Drift from Genetically Engineered Herbicide-Tolerant Crops. Environmental Science & Technology.
  • Shoba, D., Raveendran, M., Manonmani, S., Utharasu, S., Dhivyapriya, D., Subhasini, G., Sharma, R. P., 2017. Development and genetic characterization of a novel herbicide (Imazethapyr) tolerant mutant in rice (Oryza sativa L.). Rice, 10(1), 1-12.
  • Simard, M. J., Légère, A., Pageau, D., Lajeunesse, J., Warwick, S., 2002. The frequency and persistence of volunteer canola (Brassica napus) in Quebec cropping systems. Weed Technology, 16(2), 433-439.
  • Smyth, S. J., Gusta, M., Belcher, K., Phillips, P. W., & Castle, D. (2011). Environmental impacts from herbicide tolerant canola production in Western Canada. Agricultural Systems, 104(5), 403-410.
  • Steele, G. L., Chandler, J. M., McCauley, G. N., 2002. Control of Red Rice (Oryza sativa) in Imidazolinone-Tolerant Rice (O. sativa) 1. Weed Technology, 16(3), 627-630.
  • Sterling, T. M., Hal, J. C., 1997. Mechanism of action of natural auxins and the auxinic herbicides. Reviews in Toxicology, 1, 111-142.
  • Sudianto, E., Beng-Kah, S., Ting-Xiang, N., Saldain, N. E., Scott, R. C., Burgos, N. R., 2013. Clearfield® rice: Its development, success, and key challenges on a global perspective. Crop Protection, 49, 40-51.
  • Sürek, H., Ünan, R., Beşer, N., Kaya, R., Kara, A., 2016. Yabancı ot ilaçlarına dayanıklı bazı çeltik (Oryza sativa L.) genotiplerinin geliştirilmesi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 25(1), 94-99.
  • Tan, S., Evans, R. R., Dahmer, M. L., Singh, B. K., Shaner, D. L., 2005. Imidazolinone‐tolerantcrops: history, currentstatusandfuture. Pest Management Science: FormerlyPesticideScience, 61(3), 246-257.
  • Tan, S., Evans, R., & Singh, B., 2006. Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino acids, 30(2), 195-204.
  • Taran, B., Warkentin, T. D., Vandenberg, A., Holm, F. A., 2010. Variation in chickpea germplasm for tolerance to imazethapyr and imazamox herbicides. Canadian Journal of Plant Science, 90(1), 139-142.
  • Tsaftaris, A., 1996. The development of herbicide-tolerant transgenic crops. Field Crops Research, 45(1-3), 115-123.
  • Uygur, S., Uygur, F. N., 2010. Yabancı Otların Biyolojik Mücadelesi. Türkiye Biyolojik Mücadele Dergisi, 1(1), 79-95.
  • Vaughn, K. C., Duke, S. O., 1991. Biochemical basis of herbicide resistance. In Herbicide Resistance—Brassinosteroids, Gibberellins, Plant Growth Regulators (pp. 141-169). Springer, Berlin, Heidelberg.
  • Vencill, W. K. 2002. Herbicide hand book (No. Ed. 8). Weed Science Society of America. 2002 No.Ed. pp. 493.
  • Vrbničanin, S., Božić, D., & Pavlović, D., 2017. Gene flow from herbicide-resistant crops to wild relatives. Herbicide Resistance in Crops and Weeds (Ed. Pacanoski, Z.), InTech, 37-63.
  • Wang, Y., Wang, M., Xiang, S., Liu, Q., Qiang, S., Song, X., 2018. Analysis on the event of global herbicide tolerant transgenic crops. Journal of Agricultural Biotechnology, 26(1), 167-175.