Effects of Different Lactic Acid Bacteria Inoculants on Alfalfa Silage Fermentation and Quality

Effects of Different Lactic Acid Bacteria Inoculants on Alfalfa Silage Fermentation and Quality

Alfalfa (Medicago sativa L.) is a crucial perennial forage plant with high protein and mineral content and may be mowed several times through the vegetation period. Along with having a large cultivation area in Türkiye, it constitutes approximately 61% of the total green forage produced. Silage is the most effective method for preserving herbage and using it as a source of roughage throughout the year. However, ensiling alfalfa, especially with low dry matter (DM) content, is difficult due to its low water-soluble carbohydrate (WSC) and buffering capacity. This study was carried out to improve the alfalfa plant’s silage fermentation process by inoculating new lactic acid bacteria (LAB) strains. When the alfalfa plant reached 50% flowering, six different LAB strains were inoculated and compared with the uninoculated alfalfa silage. According to the results obtained, it was determined that LAB inoculants improved the fermentation properties of alfalfa silage in general. All inoculated strains caused a significant decrease in the pH of the resulting silage. The strain Lactobacillus buchneri (LS-31-1-4) was superior in terms of DM recovery (96.82%) and protein recovery (94.00%). At the same time, Lactobacillus brevis (LS-55-2-2) and Leuconostoc citerum (LS-70-6-1) were the most restrictive strains of yeast and enterobacteria growth in silage, respectively.

___

  • Agarussi, M. C. N., Pereira, O. G., da Silva, V. P., Leandro, E. S., Ribeiro, K. G., & Santos, S. A. (2019). Fermentative profile and lactic acid bacterial dynamics in non-wilted and wilted alfalfa silage in tropical conditions. Molecular Biology Reports, 46(1), 451-460.
  • AOAC. (1990). Official methods of analysis (15 ed., Vol. 222). Association of Official Analytical Chemists Washington, DC.
  • Blajman, J., Vinderola, G., Paez, R. B., & Signorini, M. (2020). The role of homofermentative and heterofermentative lactic acid bacteria for alfalfa silage: a meta-analysis. The Journal of Agricultural Science, 158(1-2), 107-118.
  • Ding, Z., Bai, J., Xu, D., Li, F., Zhang, Y., & Guo, X. (2020). Microbial community dynamics and natural fermentation profiles of ensiled alpine grass Elymus nutans prepared from different regions of the qinghai-tibetan plateau. Frontiers in microbiology, 11, 855.
  • Driehuis, F., Elferink, S. O., & Spoelstra, S. (1999). Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. Journal of applied Microbiology, 87(4), 583-594.
  • Ergin, S., & Gumus, H. (2020). Silage quality, fermentation dynamics and chemical composition of alfalfa silage prepared with salt and lactic acid bacteria inoculants. Animal Nutrition and Feed Technology, 20(3), 367-380.
  • Ertekin, İ., Çeliktaş, N., Can, E., & Kızılşimşek, M. (2017). Yonca silaj ve besleme kalitesinin FT-NIRS teknolojisi ile saptanması. KSÜ Doğa Bilimleri Dergisi, 20, 88-92.
  • Ertekin, İ., & Kızılşimşek, M. (2020). Effects of lactic acid bacteria inoculation in pre-harvesting period on fermentation and feed quality properties of alfalfa silage. Asian-Australasian Journal of Animal Sciences, 33(2), 245.
  • Filya, I. (2004). Nutritive value and aerobic stability of whole crop maize silage harvested at four stages of maturity. Animal Feed Science and Technology, 116(1-2), 141-150.
  • Filya, I., Muck, R., & Contreras-Govea, F. (2007). Inoculant effects on alfalfa silage: fermentation products and nutritive value. Journal of Dairy Science, 90(11), 5108-5114.
  • Huo, W., Wang, X., Wei, Z., Zhang, H., Liu, Q., Zhang, S., Wang, C., Chen, L., Xu, Q., & Guo, G. (2021). Effect of lactic acid bacteria on the ensiling characteristics and in vitro ruminal fermentation parameters of alfalfa silage. Italian Journal of Animal Science, 20(1), 623-631.
  • Jung, J. S., Ravindran, B., Soundharrajan, I., Awasthi, M. K., & Choi, K. C. (2022). Improved performance and microbial community dynamics in anaerobic fermentation of triticale silages at different stages. Bioresource Technology, 345, 126485. https://doi.org/https://doi.org/10.1016/j.biortech.2021.126485
  • Kızılşimşek, M., Erol, A., Dönmez, R., & Katrancı, B. (2016). Silaj mikro florasının birbirleri ile ilişkileri, silaj fermentasyonu ve kalitesi üzerine etkileri. KSÜ Doğa Bilimleri Dergisi, 19(2), 136-140.
  • Kızılşimşek, M., Keklik, K., & Günaydın, T. (2020). Yeni Laktik Asit Bakteri izolatlarının farklı kuru madde içeriğine sahip yonca (Medicago sativa L.) silajında mikrobiyel inokulant olarak kullanılma olanakları. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(5), 1331-1339.
  • Kuppusamy, P., Kim, D., Soundharrajan, I., Park, H. S., Jung, J. S., Yang, S. H., & Choi, K. C. (2020). Low-carbohydrate tolerant LAB strains identified from rumen fluid: Investigation of probiotic activity and legume silage fermentation. Microorganisms, 8(7), 1044.
  • Laslo, E., Mathe, L., Lányi, S., Ábrahám, B., Salamon, R. V., & Tókos, K. (2019). Effects of lactic acid bacteria inoculation on mountain grass and alfalfa silage fermentation characteristics. Environmental Engineering & Management Journal (EEMJ), 18(3).
  • Lee, I.-S., Lee, S.-Y., Choi, M.-K., Kang, C.-H., & Kim, J.-M. (2018). Evaluation of the fermentation ability of lactic acid bacteria to manufacture highest quality rice straw silage. Korean Journal of Crop Science, 63(2), 106-111.
  • Li, F., Ding, Z., Adesogan, A. T., Ke, W., Jiang, Y., Bai, J., Mudassar, S., Zhang, Y., Huang, W., & Guo, X. (2020). Effects of class IIa bacteriocin-producing Lactobacillus species on fermentation quality and aerobic stability of alfalfa silage. Animals, 10(9), 1575.
  • McDonald, P., Henderson, A., & Heron, S. J. E. (1991). The biochemistry of silage (2nd ed.). Chalcombe publications.
  • Muck, R. E., Nadeau, E. M. G., McAllister, T. A., Contreras-Govea, F. E., Santos, M. C., & Kung, L. (2018). Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 101(5), 3980-4000. https://doi.org/https://doi.org/10.3168/jds.2017-13839
  • Pahlow, G., Muck, R. E., Driehuis, F., Elferink, S. J. O., & Spoelstra, S. F. (2003). Microbiology of ensiling. Silage science and technology, 42, 31-93.
  • Queiroz, O., Arriola, K., Daniel, J., & Adesogan, A. (2013). Effects of 8 chemical and bacterial additives on the quality of corn silage. Journal of Dairy Science, 96(9), 5836-5843.
  • Silva, V., Pereira, O., Leandro, E., Da Silva, T., Ribeiro, K., Mantovani, H., & Santos, S. (2016). Effects of lactic acid bacteria with bacteriocinogenic potential on the fermentation profile and chemical composition of alfalfa silage in tropical conditions. Journal of Dairy Science, 99(3), 1895-1902.
  • Silva, V. P., Pereira, O. G., Leandro, E. S., Paula, R. A., Agarussi, M. C., & Ribeiro, K. G. (2020). Selection of lactic acid bacteria from alfalfa silage and its effects as inoculant on silage fermentation. Agriculture, 10(11), 518.
  • TÜİK. (2022). Türkiye İststistik Kurumu. Tarım: Bitkisel üretim istaistikleri; İstatistiksel Tablolar;Tahıllar ve diğer bitkisel ürünler;Yem bitkileri https://data.tuik.gov.tr/Kategori/GetKategori?p=Tarim-111&dil=1
  • Uher, D., Konjačić, M., Jareš, D., & Maćešić, D. (2019). The effect of bacterial inoculant on chemical composition and fermentation of alfalfa silage. Journal of Central European Agriculture, 20(2), 657-664.
  • Yakışır, B. Ö., & Aksu, T. (2019). The Effect of Different Levels of Molasses’s Dried Sugar Beet Pulp on the Quality of Alfalfa Silage. Van Veterinary Journal, 30(2).
  • Zielińska, K., Fabiszewska, A., & Stefańska, I. (2015). Different aspects of Lactobacillus inoculants on the improvement of quality and safety of alfalfa silage. Chilean journal of agricultural research, 75(3), 298-306.
Journal of Agricultural Sciences-Cover
  • ISSN: 1300-7580
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1995
  • Yayıncı: Ankara Üniversitesi
Sayıdaki Diğer Makaleler

Impact of Roasting on Quality and Compositional Characteristics of Fig Seed Oil

Aslı YILDIRIM VARDİN, Derya DENİZ ŞİRİNYILDIZ, Aslı YORULMAZ

Verification of QuEChERS Method for the Analysis of Pesticide Residues and Their Risk Assessment in Some Fruits Grown in Tokat, Turkey

Muammer KANBOLAT, Kenan KARA, Tarık BALKAN

Current antibiotic sensitivity of Lactococcus garvieae in rainbow trout (Oncorhynchus mykiss) farms from Southwestern Turkey

Sabahat Selmin SEZGİN, Mesut YILMAZ, Tülin ARSLAN, Ayşegül KUBİLAY

Diagnosis of Tomato Plant Diseases Using Pre-trained Architectures and A Proposed Convolutional Neural Network Model

Dilara GERDAN, Caner KOÇ, Mustafa VATANDAŞ

Effect of Priming on Germination Traits and Antioxidant Enzymes of Pumpkin (Cucurbita pepo L.) Seeds with Different Vigor under Drought Stress

Parisa JAHED, Mohammad SEDGHİ, Raouf SEYED SHARİFİ, Omid SOFALİAN

Volatile Compounds, Bioactive Properties and Chlorophylls Contents in Dried Spearmint (Mentha spicata L.) as Affected by Different Drying Methods

Aziz KORKMAZ, Erhan ARSLAN, Meltem KOŞAN

Determination of Some Quality Characteristics and Rheological Properties of Yoghurts Made Using Cow Milk and Soy Drink Mixture Enriched with Pomegranate Peel Extract

Hasan TEMİZ, Elif Büşra ERSÖZ

Evaluation of some Water, Energy and Financial Indicators: A Case Study of Esenli Water User Association in Yozgat, Türkiye

Sinan KARTAL, Hasan DEĞİRMENCİ, Firat ARSLAN, İsmail GİZLENCİ

Analysis of the Relationships Between Agricultural Producer Protection and Macroeconomic Variables in Fragile Five Countries by Bootstrap Panel Causality Test

Şerif CANBAY

Effects of Shade Nets on the Microclimate and Growth of the Tomato

Nefise Yasemin TEZCAN, Hazal TAŞPINAR, Candan KORKMAZ