Propolis içeren nanoliflerin sıçanlarda kornea yarası üzerindeki etkinliği
Kornea, gözün dış tabakasıdır ve anatomik konumu nedeniyle sürekli olarak travmalara maruz kalır. Propolis, bal arılarının bitkilerden topladıkları özlerle salgılarını karıştırarak ürettiği bir maddedir. Yapılan çalışmalar, propolisin organizmaların yaşamı için gerekli biyolojik aktif maddeler içerdiğini göstermiştir. Bu maddeler, epitelizasyonu arttırır ve güçlü analjezik, anti-enflamatuar, immünomodülatör, antioksidan, antitümör, antibakteriyel, antifungal ve antiviral etkilere sahiptir. Çalışmamızda, bir kornea bıçağı kullanarak çapı 3 mm olan bir kornea yarası oluşturduk. Deneysel olarak indüklenen kornea yarasında, birinci gruba herhangi bir tedavi uygulanmadı, ikinci gruba elektrospinning yöntemiyle üretilen propolis içeren nanolifler uygulandı ve üçüncü gruba ise su bazlı propolis uygulaması yapıldı. Nanopropolis yara oluşumunu takiben tek uygulama şeklinde gerçekleştirilirken, topikal su bazlı propolis günde bir uygulama şeklinde 3 gün boyunca gerçekleştirildi. Çalışma süresince sıçanların gözlerine her gün florescein boyama yapıldı ve yara boyutlarını ölçmek için fotoğraflar çekildi. Üçüncü gün, sıçanlar genel anestezi altında uyutuldu ve kornealarında histopatolojik inceleme yapıldı. Kanama açısından, propolis ve kontrol grupları arasında önemli bir fark gözlenmezken, nanopropolis grubunda daha düşük düzeyde kanama tespit edildi. Propolis ve propolis içeren nanolif grupları, kontrol grubuna göre yara iyileşmesi üzerinde önemli bir olumlu etki gösterdi.
Effects of propolis-containing nanofibers on corneal wound in rats
The cornea is the outermost layer of the eye and is constantly exposed to trauma due to its anatomical location. Propolis is a substance produced by honeybees by mixing the extracts they collect from plants with their secretions. Studies have shown that propolis contains essential biological active substances for the life of organisms, which enhance epithelialization and have strong analgesic, anti-inflammatory, immunomodulatory, antioxidant, antitumor, antibacterial, antifungal, and antiviral effects. In our study, we created a corneal wound with a diameter of 3 mm using a corneal blade. In the experimentally induced corneal wound, no treated the first group, the second group was treated with nanofibers containing propolis produced by the electrospinning method, and the third group treated water-based topical propolis application. Topical propolis was applied once a day for 3 days, while nanofibers containing propolis were applied once following wound formation. Fluorescein staining was performed on the rats eyes every day throughout the study, and photographs were taken to measure the wound sizes. On the third day, the rats were euthanized under general anesthesia, and histopathological examination was performed on their corneas. In terms of bleeding, no significant difference was observed between the propolis and control groups, while a lower level of bleeding was detected in the nanopropolis group. Propolis and nanofibers containing propolis groups showed a significantly positive effect on wound healing compared to the control group.
___
- Almuhayavi, M. S. (2020). Propolis as a novel antibacterial agent. Saudi Journal of Biological Sciences, 27(11), 3079-3086. https://doi.org/10.1016/j.sjbs.2020.09.016
- Çam, Y., Koç, A. N., Silici, S., Günes, V., Buldu, H., Onmaz, A. C., & Kasap, F. F. (2009). Treatment of dermatophytosis in young cattle with propolis and Whitfield’s ointment. Veterinary Record, 165(2), 57–58. https://doi.org/10.1136/vetrec.165.2.57
- Cavalu, S., Pasca, P. M., & Brocks, M. (2019). Natural polymeric film encapsulating propolis nano-formulation for cutaneous wound healing. Materiale Plastice, 56(3), 479–483. https://doi.org/10.37358/MP.19.3.5213
Chandler, H. L., Tan, T., Yang, C., Gemensky-Metzler, A. J., Wehrman, R. F., Jiang, Q., Peterson, C. M. W., Geng, B., Zhou, X., Wang, Q., Kaili, D., Adesanya, T. M. A., Yi, F., Zhu, H., & Ma, J. (2019). MG53 promotes corneal wound healing and mitigates fibrotic remodeling in rodents. Communications Biology, 2(1), 71. https://doi.org/10.1038/s42003-019-0316-7
- Cruz Sánchez, T. A., García, P. A. E., Zamora, C. I. L., Martínez, M. A., Valencia, V. P., & Orozco, A. L. (2014). Use of propolis for topical treatment of dermatophytosis in dog. Open Journal of Veterinary Medicine, 04(10), 239–245. https://doi.org/10.4236/ojvm.2014.410028
- Durgun, T., & Durmuş, A. S. (2004). Usıng propolis extract in the treatment of anal sacculitis in dogs. Doğu Anadolu Bölgesi Araştırmaları, 159–161.
- Forma, E., & Bryś, M. (2021). Anticancer activity of propolis and its compounds. Nutrients, 13(8), 2594. https://doi.org/10.3390/nu13082594
- Hossain, R., Quispe, C., Khan, R. A., Saikat, A. S. M., Ray, P., Ongalbek, D., & Cho, W. C. (2022). Propolis: An update on its chemistry and pharmacological applications. Chinese Medicine, 17(1), 1-60. https://doi.org/10.1186/s13020-022-00651-2
- Kasote, D., Bankova, V., & Viljoen, A. M. (2022). Propolis: Chemical diversity and challenges in quality control. Phytochemistry Reviews, 21(6), 1887-1911. https://doi.org/10.1007/s11101-022-09816-1
- Khosravimelal, S., Mobaraki, M., Eftekhari, S., Ahearne, M., Seifalian, A. M., & Gholipourmalekabadi, M. (2021). Hydrogels as emerging materials for cornea wound healing. Small, 17(30), 2006335. https://doi.org/10.1002/smll.202006335
- Ljubimov, A. V., & Saghizadeh, M. (2015). Progress in corneal wound healing. Progress in Retinal and Eye Research, 49, 17–45. https://doi.org/10.1016/j.preteyeres.2015.07.002
- Marquez, D. G. P., Maraschin, M., Olivieira, E. R., Ovalle, L. V. C., Diaz-Moreno, C., & Suarez-Mahecha, H. (2023). Metabolomic analysis and antioxidant potential of topical propolis nonpolar extracts form Colombia. Journal of Food Proccessing and Preservation, 2023. https://doi.org/10.1155/2023/9489176
- Martin, L. F. T., Rocha, E. M., Garcia, S. B., & Paula, J. S. (2013). Topical Brazilian propolis improves corneal wound healing and inflammation in rats following alkali burns. BMC Complementary and Alternative Medicine, 13(1), 337. https://doi.org/10.1186/1472-6882-13-337
- Mele, E. (2023). Electrospinning of honey and propolis for wound care. Biotechnology and Bioengineering, 120(5), 1229–1240. https://doi.org/10.1002/bit.28341
- Morais, M. S., Bonfim, D. P. D., Aguiar M. L., & Oliveira, W. P. (2022). Electrospun poly (vinyl alcohol) nanofibrous mat loaded with green propolis extract, chitosan and nystatin as an innovative wound dressing material, Journal of Pharmaceutical Innovation, 1-15. https://doi.org/10.1007/s12247-022-09681-7
- Nagai, N., Fukuoka, Y., Ishii, M., Otake, H., Yamamoto, T., Taga, A., Okamoto, N., & Shimomura, Y. (2018). Instillation of sericin enhances corneal wound healing through the erk pathway in rat debrided corneal epithelium. International Journal of Molecular Sciences, 19(4), 1123. https://doi.org/10.3390/ijms19041123
- Oruç, H. H., Sorucu, A., Ünal, H. H., & Aydın, L. (2017). Effects of season and altitude on biological active certain phenolic compounds levels and partial standardization of propolis. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 64(1), 13–20. https://doi.org/10.1501/Vetfak_0000002767
- Przybyłek, I., & Karpiński, T. M. (2019). Antibacterial properties of Propolis. Molecules, 24(11), 2047. https://doi.org/10.3390/molecules24112047
- Reins, R. Y., Hanlon, S. D., Magadi, S., & McDermott, A. M. (2016). Effects of topically applied vitamin d during corneal wound healing. PLoS ONE, 11(4), e0152889. https://doi.org/10.1371/journal.pone.0152889
- Sforcin, J. M. (2016). Biological properties and therapeutic applications of propolis. Phytotherapy Research, 30(6), 894–905. https://doi.org/10.1002/ptr.5605
- Shi, X., Zhou, T., Huang, S., Yao, Y., Xu, P., Hu, S., Tu, C., Yin, W., Gao, C., & Ye, J. (2023). An electrospun scaffold functionalized with a ROS-scavenging hydrogel stimulates ocular wound healing. Acta Biomaterialia, 158, 266–280. https://doi.org/10. 1016/j.actbio.2023.01.016
- Tatli Seven, P., Seven, I., Gul Baykalir, B., Iflazoglu Mutlu, S., & Salem, A. Z. M. (2018). Nanotechnology and nano-propolis in animal production and health: An overview. Italian Journal of Animal Science, 17(4), 921–930. https://doi.org/10.1080/1828051X.2018.1448726
- Terai, K., Call, M. K., Liu, H., Saika, S., Liu, C.-Y., Hayashi, Y., Chikama, T.-I., Zhang, J., Terai, N., Kao, C. W.-C., & Kao, W. W.-Y. (2011). Crosstalk between TGF-β and MAPK signaling during corneal wound healing. Investigative Opthalmology & Visual Science, 52(11), 8208. https://doi.org/10.1167/iovs.11-8017
- Wilson, S. E. (2020). Corneal wound healing. Experimental Eye Research, 197, 108089. https://doi.org/10.1016/j.exer.2020.108089
- Yang, J., Pi, A., Yan, L., Li, J., Nan, S., Zhang, J., & Hao, Y. (2022). Research progress on therapeutic effect and mechanism of propolis on wound healing. Evidence-Based Complementary and Alternative Medicine, 2022. https://doi.org/10.1155/2022/5798941
- Yi, Q., & Zou, W. (2019). The wound healing effect of doxycycline after corneal alkali burn in rats. Journal of Ophthalmology, 1–10. https://doi.org/10.1155/2019/5168652
- Zullkiflee, N., Taha, H., & Usman, A. (2022). Propolis: Its role and efficacy in human health and diseases. Molecules, 27(18), 6120. https://doi.org/10.3390/molecules27186120