Soma Linyit Kömürü, Külü Azaltılmış Soma Linyit Kömürü ve Kömür Karışımlarından Aktif Karbon Üretimi ve Karakterizasyonu

Aktif karbon, yüksek yüzey alanı ve yüksek adsorpsiyon özellikleri nedeniyle yaygın olarak kullanılmaktadır. Aktif karbon üretimi için farklı birçok kaynak (kömür, fındık kabuğu, saman vb.) kullanılarak kimyasal veya fiziksel aktivasyon işlemleri uygulanmaktadır. Kullanılan her bir kaynağın aktivasyon kapasitesi farklıdır. Ülkemizde kömür kaynağı kullanılarak aktivasyon yapılması konusunda pek çok çalışma yapılmaktadır. Kömürle yapılan aktivasyon çalışmalarında kül içeriğinin düşük olmasının aktivasyon üzerine olumlu etkileri olduğu belirlenmiştir. Bu çalışmada tüvenan (ham) Soma-Manisa yöresi linyit kömürü, aynı kömürün işlem görmüş hali (kül içeriği azaltılmış) ve bunların belirli oranlarda karışımlarına kimyasal aktivasyon uygulanmış ve elde edilen yüzey alanı, sabit karbon ve adsorpsiyon kapasitesi sonuçları karşılaştırmalı olarak verilmiştir. Kül içeriğinin azaltılması işlemi organik solvent kullanılarak yapılmıştır. Tüvenan Soma kömürünün kül içeriğini azaltmak amacıyla hidroflorik asit (HF), hidroklorik asit (HCl) ve hidrojen peroksit (H2O2) kullanılarak ön işlem uygulanmasının etkileri de araştırılmıştır. Aktif karbon üretimi için ön işlem görmüş ve işlem görmemiş kömürlerin potasyum hidroksit tuzu (KOH) ile karışımları hazırlanarak kimyasal aktivasyon işlemi yapılmıştır. En yüksek yüzey alanı, HF ile ön işlem görmüş Soma kömürü KOH ile karıştırılarak azot ortamında yapılan aktivasyonu sonucu 2259.38 m2 /g değerinde elde edilmiştir. Külü azaltılmış kömür ve Soma kömürünün 1:1 oranında yapılan karışımları ile de KOH kullanılarak azot ortamında yaklaşık 1600 m2 /g değerinde yüzey alanı elde edilmiştir. Elde edilen aktif karbonlar ticari aktif karbonlar ile karşılaştırıldığında KOH ile yapılan aktivasyon ile yüzey alanının daha yüksek olduğu tespit edilmiştir.

Production and Characterization of Activated Carbon from Soma Lignite Coal, Ash-Reduced Soma Lignite Coal and Coal Mixtures

Activated carbon is widely used due to its high surface area and high adsorption properties. For the production of activated carbon, chemical or physical activation process is applied by using many different sources (coal, hazelnut shell, straw, etc.). The activation capacity of each source used is different. In our country, there are many studies on activation using coal source. In activation studies with coal, it has been determined that low ash content has positive effects on activation. In this study, chemical activation was applied to the raw Soma-Manisa lignite coal, the treated form of the same coal (with reduced ash content) and their mixtures at certain ratios, and the obtained surface area, fixed carbon and adsorption capacity results were given comparatively. The ash content reduction was done by using organic solvent. The effects of pre-treatment with hydrofluoric acid (HF), hydrochloric acid (HCl) and hydrogen peroxide (H2O2) were also investigated in order to reduce the ash content of the raw Soma coal. For the production of activated carbon, mixtures of pre-treated and untreated coals with potassium hydroxide salt (KOH) were prepared and chemical activation process was carried out. The highest surface area was obtained at the value of 2259.38 m2 /g as a result of the activation of Soma coal, which was pretreated with HF, mixed with KOH and activated in the nitrogen environment. A surface area of approximately 1600 m2 /g was obtained in nitrogen environment by using KOH with mixtures of ash-reduced coal and Soma coal in a 1:1 ratio. When the activated carbons obtained were compared with the commercial activated carbons, it was determined that the surface area was higher with the activation with KOH.

___

  • Aygün, A, Yenisoy-Karakaş, S, Duman, I. 2003. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and Mesoporous Materials; 66: 189-195.
  • Bodoev, NV, Gruber, R, et. al. (1998). A novel process for preparation active carbon from sapropelitic coals. Fuel; 77 (6): 473-478.
  • Chingombe, P, Saha, B, Wakeman, RJ. (2005). Surface modification and characterization of a coal-based activated carbon. Carbon; 43: 3132-3143.
  • Chunlan, L, Shaoping, X, Yixiong, G, Shuqin, L, Changhou, L. (2005). Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH. Carbon; 43:2295-2301.
  • Cuhadaroglu, D, Uygun OA. 2008. Production and characterization of activated carbon from a bituminous coal by chemical activation. African Journal of Biotechnology; 7 (20): 3703-3710.
  • Çetinkaya, S, Sakintuna, B, Yürüm, Y. (2003). Formation of crystal structures during activated carbon production from Turkish Elbistan lignite. Fuel Chemistry Division Preprints; 48 (1): 67-69.
  • Durie, RA, Schafer, HNS. 1979. The production of active carbon from brown coal in high yields. Fuel; 58: 472-476.
  • Ennaciri, K, Baçaoui, A, Sergent, M, Yaacoubi, A. (2014). Application of fractional factorial and Doehlert designs for optimizing the preparation of activated carbons from Argan shells. Chemometrics and Intelligent Laboratory Systems; 139: 48-57.
  • Faramarzi, AH, Kaghazchi, T, Ebrahim, HA, Ebrahimi, AA. (2015). A mathematical model for prediction of pore size distribution development during activated carbon preparation. Chemical Engineering Communications; 202: 131-143.
  • Hidayat, A, Sutrisno, B. (2016).Comparison on pore development of activated carbon produced by chemical and physical activation from palm empty fruit bunch. IOP Conference Series Materials Science and Engineering, 162, 012008.
  • Hsu, LY, Teng, H. (2000). Influence of different chemical reagents on the preparation of activated carbons from bituminous coal. Fuel Processing Technology, 64 (1-3), 155-166.
  • Jiang, B, Zhang, Y, Zhou, J, Zhang, K, Chen, S. (2008). Effects of chemical modification of petroleum cokes on the properties of the resulting activated carbon. Fuel; 87: 1844-1848.
  • Jibril, M, Shawal, NN, Abbas, AZM, Dadum, HU, Musa, AM. (2014). Comparison on the characteristics of bio-based porous carbons by physical and novel chemical activation, Applied Mechanics and Materials; 554: 22-26.
  • Jin, Z, Zhao, G. (2014). Porosity evolution of activated carbon fiber prepared from liquefied wood. Part I: Water steam activation at 650 to 800 C. Bioresources; 9(2): 2237-2247.
  • Kawano, T, Kubota, M, Onyango, MS, Watanabe, F, Matsuda, H. (2008). Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump. Applied Thermal Engineering; 28: 865-871.
  • Rashidi, NA, Yusup, S, Borhan, A, Loong, LH. (2014). Experimental and modelling studies of carbon dioxide adsorption by porous biomass derived activated carbon. Clean Techn Environ Policy; 16: 1353-1361.
  • Sekirifa, ML, Mahammed, MH, et. al. (2013). Preparation and characterization of an activated carbon from a date stones variety by physical activation with carbon dioxide. Journal of Analytical and Applied Pyrolysis; 99: 155-160.
  • Teng, H, Yeh, TS, Hsu, LY. (19989. Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon; 36 (9): 1387-1395.
  • Wu, FC, Tseng, RL, Hu, CC. (2005). Comparisons of pore properties and adsorption performance of KOH-activated and steam-activated carbons. Microporous and Mesoporous Materials; 80: 95-106.
  • Yang, C. (2013). Preparation of activated carbon from coke powder by KOH activation. Advanced Materials Research; 616-618: 1894-1897.