Optoelektronik Uygulamalar için Nb+5 Katkılı Çinko Borat Camların Sentezi ve Optik, Termal ve Yapısal Özelliklerinin Belirlenmesi

Bu çalışmada niyobyum pentaoksit (Nb2O5) katkılı yüksek oranda çinko oksit (ZnO) içeren çinko borat (ZnB) oksit camlar yüksek sıcaklıkta eritme tavlama yöntemi ile başarıyla sentezlenmiştir. Sentezlenen camlara ait yapısal karakterler diferansiyel taramalı kalorimetre (DSC) ve Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) ile belirlenmiştir. DSC verilerine göre camsı geçiş (Tg), kristallenme (Tc), erime (Tm) sıcaklıkları ve termal kararlılıklar (T) belirlenerek Nb2O5 değişimiyle ilgisi açıklanmıştır. DSC verilerine göre Tg, Nb2O5 konsantrasyonunun artışıyla 560oC’den 555oC’ye; Tc, 681oC’den 657oC’ye düşmüştür. Sentezlenen cam numunelerin termal kararlılığı ise Nb2O5 artışıyla 121oC’den 102oC’ye düşmüştür. FTIR verilerine göre borun ve çinkonun yapısal birimleri açıklanmıştır. Borun cam matrisini BO3, BO4 ve borok-sol halka yapısal birimleriyle oluşturduğu, çinkonun ise cam matrisine tetrahedral ZnO4 ve oktahedral ZnO6 yapısal birimleri ile katkıda bulunduğu, niobyumun yapıda düzenleyici görev üstlendiği belirlenmiş-tir. Verilerin değerlendirilmesi sonucunda niyobyumun cam ağında oktahedral NbO6 biriminde bulunduğu gözlenmiştir. Nb2O5’in en belirgin biçimde değiştirdiği özelliklerin başında optik özellikler gelmektedir. Direkt ve indirekt optik bant aralığı, Urbach enerjisi, kırılma indisi üzerinde çalışılmış, geçirgenlik spekt-rumda çok net olmayan kaymalar gözlenmiştir. Optik bant aralığı Nb2O5 artışıyla azaldığı, Urbach enerjisi-nin arttığı belirlenmiştir. Sentezlenen numunelere ait yoğunluk, molar hacim ayrıca incelenmiş ve Nb2O5 konsantrasyonundaki artışın yoğunluk ve molar hacim değerlerini belirgin bir biçimde arttırdığı görülmüştür.

Synthesis of Nb5+ Doped Zinc Borate Glasses for Optoelectronic Applications and Determination of Optical, Thermal and Structural Properties

In this study, niobium pentoxide (Nb2O5) doped zinc borate (ZnB) oxide glasses containing high amounts of zinc oxide (ZnO) were synthesized successfully with melt-quenching method. Structural characteristics of synthesized glasses were determined with differential scanning calorimeter‎ (DSC) and Fourier-transform infrared spectroscopy (FTIR). Glass transition (Tg), crystallization (Tc), melting (Tm) temperatures and thermal stabilities (T) were determined with DSC data; their relationship with Nb2O5 concentration change was explained. According to DSC data, Tg and Tc reduced to 555oC from 560oC and to 657oC from 681oC, respectively with increasing concentration of Nb2O5. Thermal stability of glass samples reduced to 102oC from 121oC with increasing Nb2O5. Structural units of boron and zinc were explained with FTIR data. Boron was determined to establish glass matrix with structural units of BO3, BO4 and boroxol ring, zinc contributed to the glass matrix with its ZnO4 and octahedral ZnO6 structural units, and niobium acted as modifier within the structure. Our data showed that niobium was present in the glass network, mostly within the octahedral NbO6 unit. Optical properties are among the most significantly altered properties in response to Nb2O5. Direct and indirect optical band gaps, Urbach energies, and refractive indices were studied, and unclear shifts were observed in the transmittance spectrum. We observed that optical band gap decreased and Urbach energy increased with increasing amount of Nb2O5. Densities and molar volumes of synthesized glasses were also examined we observed that increase in Nb2O5 concentrations significantly led to increase in density and molar volume values. 

___

  • Abdel-Baki, M.ve El-Diasty, F. (2011). Role of oxygen on the optical properties of borate glass doped with ZnO. Journal of Solid State Chemistry, 184, 2762-2769.
  • Agarwal, A., Sheoran, A., Sanghi, S., Bhatnagar, V., Gupta, S.K. ve Arora, M. (2010). Structural investigation and electron paramagnetic resonance of vanadyl doped alkali niobium borate glasses. Spectrochimica Acta Part A, 75, 964–969.
  • Aleksandrov, L., Komatsu, T., Iordanova, R. ve Dimitriev, Y. (2011). Structure study of MoO3-ZnO- B2O3 glasses by Raman spectroscopy and formation of ZnMoO4 nanocrystals. Optical Materials, 33, 839-845.
  • Altaf, M., Chaudhry, M. A. ve Zahid, M. (2003). Study of optical band gap of zinc-borate glasses. Journal of Research (Science), 14(2), 253-259.
  • Annapurna, K., Kumar, A., Dwivedi, R.N. ve Hussain, N.S. (2000). Fluorescence spectra of Cu+: ZnO- B2O3-SiO2 glass. Materials Letters, 45, 23-26.
  • Arora, S., Kundu, V., Goyal, D.R. ve Maan, A.S. (2013). Effect of stepwise replacement of LiF by ZnO on structural and optical properties of LiF. B2O3 glasses. Turkish Journal of Physics, 37, 229 – 236.
  • Bale, S. ve Rahman, S. (2012). Electrical conductivity studies of Bi2O3-Li2O-ZnO-B2O3 glasses. Materials Research Bulletin, 47, 1153-1157.
  • Bale, S., Rahman, S., Awasthi, A.M. ve Sathe, V. (2008). Role of Bi2O3 content on physical, optical and vibrational studies in Bi2O3-ZnO-B2O3 glasses. Journal of Alloys and Compounds, 460, 699-703.
  • Conzone, S.D. ve Shelby, J.E. (2006). Formation and properties of sodium tantalum silicate glasses. Physics and Chemistry of Glasses Part B, 47(3), 283-287.
  • Chu, C.M., Wu, J.J., Yung, S.W., Chin, T.S., Zhang, T. ve Wu, F.B. (2011). Optical and structural properties of Sr–Nb–phosphate glasses. Journal of Non-Crystalline Solids, 357, 939–945.
  • Dimitrov, V. ve Sakka, S. (1996). Linear and nonlinear optical properties of simple oxides. II. Journal of Applied Physics, 79, 1741-1745.
  • El-Batal, H.A.R. ve Ezz-El-Din, F.M. (1993). Interaction of γ-rays with Some Alkali Alkaline Earth Borate Glasses Containing Chromium. Journal of the American Ceramic Society, 76, 523.
  • El-Falaky, G.E., Gaafar, M.S. ve Abd El-Aal, N.S. (2012). Ultrasonic relaxation in Zinc-Borate glasses. Current Applied Physics, 12, 589-596.
  • Elkhoshkhany, N., El-Mallawany, R. ve Syala, E. (2016). Mechanical and thermal properties of TeO2–Bi2O3–V2O5–Na2O–TiO2 glass system. Ceramics International, 42(16), 19218–19224.
  • He, F., Wang, J. ve Deng, D. (2011). Effect of Bi2O3 on structure and wetting studies of Bi2O3-ZnO-B2O3 glasses. Journal of Alloys and Compounds, 509, 6332-6336.
  • Hu, Y., Wei, D., Fu, Q., Zhao, J. ve Zhou, D. (2012). Preparation and microwave dielectric properties of 3ZnO· B2O3 ceramics with low sintering temperature. Journal of the European Ceramic Society, 32, 521-524.
  • Issever, U.G., Kilic, G., Peker, M., Ünaldi, T. ve Aybek, A.S. (2019). Effect of low ratio V5+ doping on structural and optical properties of borotellurite semiconducting oxide glasses. Journal of Materials Science: Materials in Electronics, https://doi.org/10.1007/s10854-019-01889-7
  • Ji, L.N., Li, J.B., Liang, J.K., Sun, B.J. ve Liu, Y.H. (2008). Phase relations and flux research for ZnO crystal growth in the ZnO-B2O3- P2O5 system. Journal of Alloys and Compounds, 459, 481-486.
  • Jiao, Q., Yu, X., Xu, X., Zhou, D. ve Qiu, J. (2013). Relationship between Eu3+ reduction and glass polymeric structure in Al2O3-modified borate glasses under air atmosphere. Journal of Solid State Chemistry, 202, 65–69.
  • Kaur, A., Khanna, A., Sathe, V.G., Gonzalez, F. ve Ortiz, B. (2013). Optical, thermal, and structural properties of Nb2O5-TeO2 and WO3-TeO2 glasses. Phase Transitions, 86(6), 598-619.
  • Kılıç, G. (2006). Değişik bileşimli camların hazırlanması, fiziksel ve optik özelliklerinin incelenmesi (Doktora Tezi). Erişim adresi: https://tez.yok.gov.tr/UlusalTezMerkezi
  • Kilic, G., Issever, U.G. ve Ilik, E. (2019). Characterization of Er3+ doped ZnTeTa semiconducting oxide glass. Journal of Materials Science: Materials in Electronics, 30(9), 8920-8930.
  • Kim, D.N., Lee, J.Y. ve Huh, J. S. (2002). Thermal and electrical properties of BaO-B2O3-ZnO glasses. Journal of Non-Crystalline Solids, 306, 70-75.
  • Kobayashi, K. (1995). OH-Related Capacitance-Voltage Recovery Effect in MOS Capacitors Passivated by Fluoride-Containing ZnO-B2O3-SiO2- P2O5 Glasses. Journal of Solid State Chemistry, 118, 212-214.
  • Kumar, R.R., Bhatnagar, A.K. ve Rao, J.L. (2002). EPR of vanadyl ions in alkali lead borate glasses. Materials Letters, 57, 178-182.
  • Lakshminarayana, G. ve Buddhudu, S. (2006). Spectral analysis of Sm3+ and Dy3+: B2O3-ZnO-PbO glasses. Physica B, 373, 100-106.
  • Li, S., Chen, P. ve Li, Y. (2010). Structural and physical properties in the system ZnO-B2O3-P2O5-RnOm. Physica B, 405, 4845-4850.
  • Lian, Z., Wang, J., Lv, Y. ve Wang, S. (2007). The reduction of Eu3+ to Eu2+ in air and luminescence properties of Eu2+ activated ZnO-B2O3-P2O5 glasses. Journal of Alloys and Compounds, 430, 257-261.
  • Lin, J., Huang, W., Sun, Z., Ray, C.S. ve Day, D.E. (2004). Structure and non-linear optical performance of TeO2-Nb2O5-ZnO glasses. Journal of Non-Crystalline Solids, 336, 189-194.
  • Masuda, H., Kimura, R. ve Sakamoto, N. (1999). Properties and Structure of Glasses in the System BaO-B2O3-ZnO. Journal of the Japan Institute of Metals and Materials, 63, 284.
  • Mauro, N.A., Johnson, M.L., Bendert, J.C. ve Kelton, K.F. (2013). Structural evolution in Ni-Nb and Ni-Nb-Ta liquids and glasses- A measure of liquid fragility. Journal of Non-Crystalline Solids, 362, 237-245.
  • Mohamed, N.B., Yahya, A.K., Deni, M.S.M., Mohamed, S.N., Halimah, M.K. ve Sidek, H.A.A. (2010). Effects of concurrent TeO2 reduction and ZnO addition on elastic and structural properties of (90−x) TeO2–10Nb2O5–(x)ZnO glass. Journal of Non-Crystalline Solids, 356, 1626–1630.
  • Monteiro, R.C.C., Lopes, A.A.S., Lima, M.M.R.A. ve Veiga, J.P.B. (2018). Thermal characteristics and crystallization behavior of zinc borosilicate glasses containing Nb2O5. Journal of Non-Crystalline Solids, 491, 124–132.
  • Mosner, P., Vosejpkova, K., Koudelka, L., Montagne, L. ve Revel, B. (2010). Structure and properties of ZnO- B2O3-P2O5-TeO2 glasses. Materials Chemistry and Physics, 124, 732-737.
  • Pascuta, P., Vladescu, A., Borodi, G., Culea, E. ve Tetean, R. (2011). Structural and magnetic properties of zinc ferrite incorporated in amorphous matrix. Ceramics International, 37, 3343–3349.
  • Rada, M., Rada, S., Pascuta, P. ve Culea, E. (2010). Structural properties of molybdenum-lead-borate glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 77, 832-837.
  • Raju, G.N., Gandhi, Y., Rao, N. S. ve Veeraiah, N. (2006). Study on the influence of TiO2 on the insulating strength of ZnO-ZnF2-B2O3 glasses by means of dielectric properties. Solid State Communications, 139, 64-69.
  • Raju, G.N., Reddy, M.S. ve Sudhakar, K.S.V. (2007). Spectroscopic properties of copper ions in ZnO-ZnF2-B2O3 glasses. Optical Materials, 29, 1467-1474.
  • Rao, R.B. ve Veeraiah, N. (2004). Study on some physical properties of Li2O-MO-B2O3: V2O5 glasses. Physica B, 348, 256-271.
  • Rao, T.R., Reddy, Ch.V., Krishna, Ch.R., Thampy, U.S.U., Raju, R.R., Rao, P.S. ve Ravikumar, R.V.S.S.N. (2011). Correlation between physical and structural properties of Co2+ doped mixed alkali zinc borate glasses. Journal of Non-Crystalline Solids, 357, 3373-3380.
  • Razali, W.A.W., Azman, K., Hashim, S., Alajerami, Y.S.M., Syamsyir, S.A., Mardhiah, A. ve Ridzwan, M.H.J. (2013). Physical, Structural, and Luminescence Studies of Nd3+ Doped MgO–ZnO Borate Glass. Optics and Spectroscopy, 115, 701–707.
  • Saida, J. ve Inoune, A. (2001). Icosahedral quasicrystalline phase formation in Zr-Al-Ni-Cu glassy alloys by addition of Nb, Ta and V elements. Journal of Physics: Condensed Matter, 13, 4.
  • Saritha, D., Markandeya, Y., Salagram, M. ve Vithal, M. (2008). Effect of Bi2O3 on physical, optical and structural studies of ZnO-Bi2O3-B2O3 glasses. Journal of Non-Crystalline Solids, 354, 5573-5579.
  • Singh, G.P., Kaur, P., Kaur, S. ve Singh, D.P. (2011a). Role of WO3 in structural and optical properties of WO3-Al2O3-PbO-B2O3 glasses. Physica B, 406, 4652-4656.
  • Singh, G.P., Kaur, S., Kaur, P., Kumar, S. ve Singh, D.P. (2011b). Structural and optical properties of WO3-ZnO-PbO-B2O3 glasses. Physica B, 406, 1890-1893.
  • Singh, H., Singh, K., Gerward, L.ve Singh, K. (2003). ZnO-PbO-B2O3 glasses as gamma-ray shielding materials. Nuclear Instruments and Methods in Physics Research B, 207, 257-262.
  • Singh, S.P., Pal, K., Tarafder, A., Das, M., Annapurna, K. ve Karmakar, B. (2010). Effects of SiO2 and TiO2 fillers on thermal and dielectric properties of eco-friendly bismuth glass microcomposites of plasma display panels. Bulletin of Materials Science, 33, 33–41.
  • Sontakke, A.D., Tarafder, A., Biswas, K. ve Annapurna, K. (2009). Sensitized red luminescence from Bi3+ co-doped Eu3+: ZnO-B2O3 glasses. Physica B, 404, 3525-3529.
  • Srikumar, T., Brik, M.G., Rao, C.S., Gandhi, Y. ve Rao, D.K. (2011a). Spectral and fluorescent kinetics features of Nd3+ ion in Nb2O5, Ta2O5 and La2O3 mixed lithium zirconium silicate glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81, 498-503.
  • Srikumar, T., Brik, M.G., Rao, C.S., Venkatramaiah, N. ve Gandhi, Y. (2011b). Emission features of Ho3+ ion in Nb2O5, Ta2O5 and La2O3 mixed Li2O-ZrO2-SiO2 glasses. Physica B, 406, 3592-3598.
  • Sumalatha, B., Omkaram, I., Rao, T.R. ve Raju, Ch. L. (2011). Alkaline earth zinc borate glasses doped with Cu2+ ions studied by EPR, optical and IR techniques. Journal of Non-Crystalline Solids, 357, 3143-3152.
  • Thulasiramudu, A. ve Buddhudu, S. (2007). Optical characterization of Sm3+ and Dy3+: ZnO-PbO- B2O3 glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67, 802-807.
  • Villegas, M.A. ve Navarro, J.M.F. (2007). Physical and structural properties of glasses in the TeO2–TiO2–Nb2O5 system. Journal of the European Ceramic Society, 27, 2715–2723.
  • Wu, J., Xie, C., Hu, J., Zeng, D. ve Wang, A. (2004). Microstructure and electrical characteristics of ZnO- B2O3-PbO-V2O5-MnO2 ceramics prepared from ZnO nanopowders. Journal of the European Ceramic Society, 24, 3635-3641.