Olanzapin'in İndirgenme Davranışının İncelenmesi ve İlaçlar ile İnsan İdrarında Diferansiyel puls Tekniği ile Tayini

Olanzapinin elektrokimyasal indirgenme özelliği DPV (diferansiyel puls voltametri) ve CV (dönüşümlü voltametri) teknikleri ile camsı karbon çalışma elektrodu kullanılarak incelendi. pH’sı 0.50 – 12.05 aralığında değişen farklı tampon çözeltilerde ölçümler alındı. Pik potansiyelinin ve pik akımının pH ile değişimi incelendi ve destek elektrolit olarak pH=7.0 Britton-Robinson tampon çözeltisi seçildi. Elektrot reaksiyonuna katılan elektron ve proton sayısını belirlemek için, artan pH ile pik potansiyellerinin değişimi incelendi. Transfer edilen elektron sayısı elektrot reaksiyonuna katılan hidrojen iyonu sayısına eşit bulundu. Eşit elektron ve proton sayısı önerilen indirgenme mekanizması ile de desteklendi. DPV analizleri için olanzapinin doğrusal çalışma aralığı pH=7.0 Britton-Robinson tampon çözeltisinde, 2x10-5M - 1x10-4M konsantrasyon aralığında çizildi. Belirme sınırı (LOD) ve kantitatif tayin sınırı (LOQ) sırasıyla 1.88x10-6M ve 6.29x10-6M olarak hesaplandı. Son olarak geliştirilen voltametrik teknik olanzapin içeren tabletlere ve insan idrarına dışarıdan uygulanarak, geri kazanım çalışmaları yapıldı. Bunların yanı sıra olanzapinin indirgenme özelliği için elektrokimyasal bir indirgenme mekanizması da önerildi.

Reduction Behaviour of Olanzapine and Its Differansiyel Puls Voltammetric Determination in Human Urine and Pharmaceuticals

The electrochemical reduction behavior of olanzapine was investigated by DPV (differential pulse voltammetry) and CV (cyclic voltammetry) techniques using a glassy carbon electrode. The measurements were carried out in different buffer solutions in a pH range from 0.50 to 12.05. The behavior of the peak potential and the peak current were examined by changing the pH, and a pH= 7.0 Britton-Robinson buffer solution was selected as the supporting electrolyte. To designate the electron and proton numbers that participated in the reaction, the changing peak potentials of olanzapine with increasing pH were investigated. The number of transferred electrons was found equal to the number of the hydrogen ions taking part in the electrode reaction. Equal electron and proton numbers were also supported with suggested reduction mechanism. For DPV analysis, the linear calibration curve of olanzapine was plotted between concentrations 2x10-5M and 1x10-4M at the pH= 7.0 Britton-Robinson buffer solution. The limit of detection (LOD) and the limit of quantification (LOQ) were found to be 1.88x10-6 M and 6.29x10-6M, respectively. Lastly, the developed technique was applied to spiked urine and pharmaceutical preparations for recovery studies of olanzapine. A reaction mechanism related to the reduction of olanzapine was also proposed with this study.

___

  • Ahmed, H. M., Mohamed, M. A., & Salemb, W. M. (2015). New voltammetric analysis of Olanzapine in tablets and human urine samples using a modified carbon paste sensor electrode incorporating gold nanoparticles and glutamine in a micellar medium, Anal. Methods, 7, 581-589. https://doi.org/10.1039/C4AY02450H
  • Azab, S. M., & Amany M. Fekry, A. M. (2019). Role of green chemistry in antipsychotics’ electrochemical investigations using a nontoxic modified sensor in mcilvaine buffer solution, ACS Omega, 4, 25-30. https://doi.org/10.1021/acsomega.8b01972
  • Behzad, L. M., Ghoviland, M. B., Shamsipur, M., Ghoviland, K., Barati, A., & Gholami, A. (2016). Highly sensitive voltammetric sensor based on immobilization of bisphosphoramidate-derivative and quantum dots onto multi-walled carbon nanotubes modified gold electrode for the electrocatalytic determination of Olanzapine, Materials Science and Engineering C, 60, 67-77. https://doi.org/10.1016/j.msec.2015.10.068
  • Berna, M., Ackermann, B.; Ruterbories, K., & Glass, S. (2002). Determination of Olanzapine in human blood by liquid chromatography/tandem mass spectrometry, Journal of Chromatography B., 67, 163-168. DOI: http://doi.org/10.1016/s0378-4347(01)00548-5
  • Biryol,I., & Erk, N. (2013). Voltammetric, spectrophotometric, and high performance liquid chromatographic analysis of Olanzapine, Analytical Letters, 36 (11), 2497–2513. https://doi.org/10.1081/AL-120024338
  • El Shal, M. (2013). Electrochemical studies for the determination of quetiapine fumarate and Olanzapine antipsychotic drugs, Advenced Pharmaceutical Bulletin, 3 (2), 339–344. DOI: 10.5681/apb.2013.055
  • Firdous, S., Aman, T., & Nisa, A. (2005). Determination of Olanzapine by Uv spectrophotometry and non-aqueous titration, J. Chem. Soc. Pak., 27, 163–167. https://www.jcsp.org.pk/ArticleUpload/958-4115-1-RV.pdf
  • Jasinska, A., & Nalewajko, E. (2004). Batch and flow injection methods for the spectrophotometric determination of Olanzapine, Anal. Chim. Acta, 508, 165–170. DOI: https://doi.org/10.1016/j.aca.2003.11.069
  • Karadurmus, L., Kir, D., Kurbanoglu, S., & Ozkan, S. A. (2019). Electrochemical analysis of antipsychotics, Current Pharmaceutıcal Analysıs, 15 (5), 413-428. DOI : 10.2174/1573412914666180710114458
  • Kasper, S.C., Mattiuz, E.L., Swanson, S.P., Chiu, J.A., Johnson, J.T., & Garner, C.O. (1999). Determination of Olanzapine in human breast milk by high-performance liquid chromatography with electrochemical detection, Journal of Chromatography B: Biomedical Sciences and Applications, 726, 203-209. DOI:http://doi.org/10.1016/s0378-4347(99)00017-1
  • Kul, D. 2019. Voltammetric analysis of a typical antipsychotic drugs with solid electrodes, Current Analytıcal Chemıstry, 15 (3), 240-248. DOI : 10.2174/1573411014666180426170022
  • Mashhadizadeh, M. H., & Afshar, E. (2012). Electrochemical studies and selective detection of thioridazine using a carbon paste electrode modified with zn nanoparticles and simultaneous determination of Thioridazine and Olanzapine, Electroanalysis, 24 (11), 2193 – 2202. https://doi.org/10.1002/elan.201200422
  • Merli, D., Dondi, D., Pesavento, M., & Profumo, A. (2012). Electrochemistry of Olanzapine and risperidone at carbon nanotubes modified gold electrode through classical and dft approaches, Journal of Electroanalytical Chemistry, 683, 103–111. DOI: 10.1016/j.jelechem.2012.08.011
  • Olanzapine https://medlineplus.gov/druginfo/meds/a601213.html.
  • Pucci, V., Raggi, M., & Kenndler, E. (1999). Separation of eleven central nervous system drugs by capillary zone electrophoresis, Journal of Chromatography B: Biomedical Sciences and Applications, 728, 263-271. https://doi.org/10.1016/S0378-4347(99)00101-2
  • Raggi, M.A., Casamenti, G., Mandrioli, R., Fanali, S., Ronchi, D.D., & Volterra, V. (2000). Determination of the novel antipsychotic drug Olanzapine in human plasma using HPLC with amperometric detection, Chromatographia, 51, 562-566. DOI: 10.1007/BF02490813
  • Rouhani, M., & Soleymanpour, A. (2019). A new selective carbon paste electrode for potentiometric analysis of olanzapine, Measurement, 140, 472-478. DOI: 10.1016/j.measurement.2019.04.018
  • Shahrokhian, S., Azimzadeha, M., & Hosseinia, P. (2014). Modification of a glassy carbon electrode with a bilayer of multiwalled carbon nanotube/benzenedisulfonate-doped polypyrrole: Application to sensitive voltammetric determination of Olanzapine, RSC Adv., 4 , 4055-4060. https://doi.org/10.1039/C4RA04584J
  • Yılmaz, B., Albayrak, M., & Kadioglu, Y. (2017). Determination of Olanzapine in pharmaceutical preparations by linear sweep voltammetry method, CBU J. Of Sci., 13 (1), 99-104. https://doi.org/10.18466/cbayarfbe.302648
Journal of Advanced Research in Natural and Applied Sciences-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2015
  • Yayıncı: Çanakkale Onsekiz Mart Üniversitesi