Metil Oranj Bozunması ve Epinefrin Oksidasyonu için PEI-M [M:Cu(II) ve Co(II)] Hidrojel Katalizör

Bu çalışmada, Polietilenimin-M(II) (PEI-M: Cu(II) ve Co(II)) hidrojel kompozitlerinin H2O2 indirgeyici olarak kullanılıdığı reaksiyonlarda katalitik aktiviteleri incelendi. Buna göre, PEI-Cu/H2O2 heterojen kompozitleri metil oranjın sulu çözeltisinde (MO) bozunma reaksiyonunda katalizör olarak kullanıldı. Metil oranj, 63 mM H2O2 varlı- ğında %100 olarak 80 dakikada ortamdan uzaklaştırıldı. Metil oranj bozunma reaksiyonunun kinetik çalışmalarında pseudo birinci dereceden kinetik modele uygulanabilir olduğu gösterildi. Bunlara ek olarak, bir ilaç olan epinefrin (adrenalin), PEI-Co(II)/H2O2 hidrojel kompozit sistemi varlığında adrenokrom'a yükseltgendi. Epinefrin'in yaklaşık %50'si 55 dakikadan daha az bir sürede adrenokroma dö- nüştürüldü ve pseudo birinci dereceden kinetik modele uygulanabilir olduğu gösterildi. MO ve EP yükseltgenmesi reaksiyonlarının aktivasyon enerjileri sırasıyla 44,09 ve 58,02 Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 3 kj.mol-1 olarak hesaplandı. MO ve EP oksidasyonuna etki eden çeşitli parametreler çalışıldı. 

PEI-M [M:Cu(II) and Co(II)] Hydrogel Catalyst For Methyl Orange Degradation And Epinephrine Oxidation

Here, we report the catalytic activity of catalyst derived from polyethylene imine-M (II) (PEI-M: Cu(II), and Co(II)) hydrogel composite in the presence of H2O2 as an oxidant. The PEI-Cu(II)/H2O2 heterogeneous composite was used in the degradation of an azo-dye, methyl orange (MO) in aqueous solution. In the presence of 63 mM H2O2, 100% of MO was removed in 80 min. The kinetics investigation of the processes demonstrated a pseudo-first-order kinetic model was applicable. Additionally, a pharmaceutical product, epinephrine (EP) was partially oxidized to adrenochrome by PEI-Co(II)/H2O2 hydrogel composite system. About 50% of conversion to adrenochrome was reached in less than 55 min again comply with the pseudo-first-order kinetic model. Both MO and EP oxidation reaction provided mild activation energies, 44.09, and 58.02 kj.mol-1, respectively. Various parameters effecting MO and EP oxidation were investigated.

___

  • Akbal, F. (2005). Photocatalytic degradation of organic dyes in the presence of titatium dioxide under UV and solar light: effect of operational parameters. Environment Progress, 24, 317–322.
  • Baldrian, P., Merhautova´, V., Gabriel, J., Nerud, F., Stopka, P., Hruby, M., Benes, M.J. (2006). Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxide. Applied Catalysis B: Environmental, 66, 258-264.
  • Bamoharram, F.F., Heravi, M.M., Roushani, M., Toosi, M.R., Jodeyre, L. (2009). Synthesis and characterization of silica-supported preyssler nanoparticles and its catalytic activity for photodegradation of methyl orange. Green Chemistry Letters and Reviews, 2, 35–41.
  • Centi, G., Ciambelli, P., Perathoner, S., Russo, P. (2002). Environmental catalysis: trends and outlook. Catalysis Today, 75, 3–15.
  • Chen, D., Chen, J., Luan, X., Ji, H., Xia, Z. (2011). Characterization of anion-cationic surfactants modified montmorillonite and its application for the removal of methyl orange. Chemical Engineering Journal, 171, 1150–1158.
  • Demirci, S., Sahiner, N. (2014a). PEI-based ionic liquid colloids for versatine use: Biomedical and environmental applications. Journal of Molecular Liquids, 194, 85–92.
  • Demirci, S., Sahiner, N. (2014b). Superior reusability of metal catalysts prepared within poly(ethylene imine) microgels for H2 production from NaBH4 hydrolysis. Fuel Processing Technology, 127, 88–96.
  • Dempsey, E., Kennedy, A., Fay, N., McCormac, T. (2003). Investigations into heteropolyanions as electrocatalysts for the oxidation of adrenaline. Electroanalysis, 15, 1835–1842.
  • Fan, J., Guo, Y., Wang, J., Fan, M. (2009). Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials, 166, 904–910.
  • Farzaneh, F., Majidian, M., Ghandi, M. (1999). The oxyfunctionalizations of cyclohexane catalyzed by Mn(II) complexes included in zeolite Y. Journal of Molecular Catalysis A: Chemistry, 148, 227–233.
  • Feng, J., Hu, X., Yue, P.L. (2004). Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-fenton discoloration and mineralization of orange II. Environmental Science and Technology, 38, 269–275.
  • Gemeay, A.H., Mansour, I.A., El Sharkawy, R.G., Zaki, A.B. (2003). Kinetics and mechanism of the heterogeneous catalyzed oxidative degradation of indigo carmine. Journal of Molecular Catalysis A: Chemical, 193, 109–120.
  • Guo, J., Al Dahhan, M. (2003). Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst. Industrial Engineering Chemical Research, 42, 2450–2460.
  • Idel-aouad, R., Valiente, M., Yacoubi, A., Tanouti, B., López-Mesas, M. (2011). Rapid decolourization and mineralization of the zo dye C.I. Acid red 14 by heterogeneous Fenton reaction. Journal of Hazardous Materials, 186, 745–750.
  • Jiang, R., Zhu, H., Yao, J., Fu, Y., Guan, Y. (2012). Chitosan hydrogel films as a template for mild biosynthesis of CdS quantum dots with highly efficient photocatalytic activity. Applied Surface Science, 258, 3513–3518.
  • Jose, J., John, M., Gigimol, M.G., Mathew, B. (2003). Synthesis, characterization, and catalytic activity of crosslinked poly(N-vinyl-2-pyrollidone acrylc acid) copolymer-metal complexes. Journal of Apllied Polymer Science, 90, 895–904.
  • Keresztessy, Z., Bodnar, M., Ber, E., Hadju, I., Zhang, M., Hartmann, J.F., Minko, T., Borbely, J. (2009). Self-assembling chitosan/poly-γ-glutamic acid nanoparticles for targeted drug delivery. Colloid Polymer Science, 287, 759-765.
  • Kitamura, Y., Mifune, M., Takatsuki, T., Iwasaki, T., Kawamoto, M., Iwado, A., Chikuma, M., Saito, Y. (2008). Ion-exchange resins modified with metal-pprphyrin as a catalysis for oxidation of epinephrine (adrenaline). Catalysis Communication, 9, 224–228.
  • Lupanoa, L.V.L., Martínezb, J.M.L., Piehld, L.L., de Celis, E.R., Dall’ Orto, V.C. (2013). Activation of H2O2 and superoxide production using a novel cobalt complex based on a polyampholyte. Applied Catalysis A: General, 467, 342–354.
  • Maury, M.R., Saini, P., Haldar, C., Avecilla, F. (2012). Synthesis, characterization and catalytic activities of manganese(III) complexes of pyridoxal-based ONNO donor tetradenatate ligands. Polyhedron, 31, 710–720.
  • Mittal, A., Malviya, A., Kaur, D., Mittal, J., Kurup, L. (2007). Studieson the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from waste waters using waste materials. Journal of Hazardous Materials, 148, 229–240.
  • Nezamzadeh-Ejhieh, A., Moazzeni, N. (2013). Sunlight photodecolorization of a mixture of methyl orange and bromocresol green by CuS incorporated in a clinoptilolite zeolite as a heterogeneous catalyst. Journal of Industrial Engineering Chemistry, 19, 1433–1442.
  • Ni, J.A., Ju, H.X., Chen, H.Y., Leech, D. (1999). Amperometric determination of epinephrine with and osmium complex and Nafion double-layer membrane modified electrode. Analytical Chimica Acta, 378, 151–157.
  • Ozay, O., Akcali, A., Otkun, M.T., Silan, C., Aktas, N., Sahiner, N. (2010). P(4-VP) based nanoparticles and composites with dual action as antimicrobial materials. Colloids and Surfaces B: Biointerfaces, 79, 460–466.
  • Rafiquee, M.Z.A., Siddiqui, M.R., Ali, M.S., Al-Lohedan, H.A. (2014). Spectrophotometric investigation on the kinetics of oxidation of adrenaline by dioxygen of μ-dioxytetrakis(histidinato)-dicobalt(II) complex. Spectrochimica Acta Part A: Molecular ve Biomolecular Spectroscopy, 126, 21–27.
  • Sahiner, N. (2013). Preparation of poly(ethylene imine) particles for versatile applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 433, 212–218.
  • Szigyártó, Cs., Szabó, L., Simándi, L.I. (2013). Kinetic studies on the manganese(II) complex catalyzed oxidation of epinephrine, Journal of Molecular Catalysis A: Chemical, 372, 66–71.
  • Taei, M., Jamshidi, M. (2014). Highly selective determination of ascorbic acid, epinephrine, and uric acid by differential pulse voltammetry using poly(Adizol Black B)-modified glassy carbon electrode. Journal of Sold State Electrochemistry, 18, 673–683.
  • Tang, W.Z., Chen, R.Z. (1996). Decolorization kinetics and mechanisms of commercial dyes by H2O2/iron powder system. Chemosphere, 32, 947–958.
  • Tao, Z., Wang, G., Goodisman, J., Asefa, T. (2009). Accelerated oxidation of epinephrine by silica nanoparticles. Langmuir, 25, 10183–10188.
  • Victoria, L., Lupano, L., Martínez, J.M.L., Piehl, L.L., Celis, E.R., Sánchez, R.M.T., Orto, V.C.D. (2014). Synthesis, characterization, and catalytic properties of cationic hydrogels containing copper(II) and cobalt(II) ions. Langmuir, 30, 2903−2913.
  • Wang, S., Gong, Q., Liang, J. (2009). Sono photocatalytic degradation of methyl orange by carbon nanotube/TiO2 in aqueous solutions. Ultrasonic Sonochemistry, 16, 205–208.
  • Wu, R.C., Qu, J.H. (2004). Removal of azo dye from water by magnetite adsorption-fenton oxidation. Water Environment Research, 76, 2637–2642.
  • Xu, H.Y., Liu, W.C., Qi, S.Y., Li, Y., Zhao, Y., Li, J.W. (2014). Kinetics and optimization of the decolorization of dyeing wastewater by a schorl-catalyzed fenton-like reaction. Journal of Serbian Chemical Society, 79, 361–377.
  • Yuan, S., Li, Y., Zhang, Q., Wang, H. (2009). ZnO nanorods decorated calcined Mg-Al layered double hydroxides as photocatalysts with a high adsorptive capacity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348, 76–81.
  • Zaghouane-Boudiaf, H., Boutahala, M., Arab, L. (2012). Removal of methyl orange from aqueous solution by uncalcined and calcined MgNiAl layered double hydroxides (LDHs). Chemical Engineering Journal, 187, 142–149.