Determination of seed yield, quality and fixed oil components of different basil (Ocimum basilicum L.) genotypes: Evaluation of fatty acid profile by PCA biplot analysis

Basil (Ocimum basilicum L.) plants are generally grown for different properties and produce seed with a considerable amount at the end of the growing season. This study was carried out to determine the seed yield, quality and fixed oil components of eight different basil (B) genotypes with purple (PB) and green (GB) leaf color obtained from different countries. In other words, seed yield and quality, fixed oil components, the seed yield, 1000 seed weight, oil content, oil yield, crude protein, ash, linoleic acid, linolenic acid, oleic acid, palmitic acid, stearic acid, hexadecatrienoic acid properties, ethyl linolate and trace oil contents were investigated. Seed yield, 1000 seeds weight and oil yield were significant statistically among the genotypes. While the best result in terms of seed and oil yield was obtained from GB1, the highest 1000 seeds weight was recorded in GB4. Palmitic acid and trace oil contents of genotypes were significant statistically. The highest palmitic acid content was detected in GB2, whereas the maximum trace oil contents were obtained from GB5. In results of principal components analysis (PCA) purple and green basil types demonstrated different features in terms of fixed oil components. GB2, GB4 and GB5 basil genotypes which have green leaf types were superior according to the PCA. GB2 genotype obtained from Hungary was the better in terms of seed yield and fixed oil components among the purple and green basil genotypes used in this research.

___

  • Angers, P., Morales, M.R., & Simon J.E. (1996). Fatty acid variation in seed oil among Ocimum species. J. Am. Oil. Chem. Soc. 73, 393-395. https://doi.org/10.1007/BF02523437
  • AOAC. (2005). Official methods of analysis. Association of Official Analytical Chemists. Arlington, VA, (USA).
  • AOAC. (2019). 21st edition. official methods of analysis 2019 AOAC International.
  • Behera, S., Nagarajan, S. & Rao L.J.M. (2004). Microwave heating and conventional roasting of cumin seeds (Cuminum cyminum L.) and effect on chemical composition of volatiles. Food Chem. 87, 25-29. https://doi.org/10.1016/j.foodchem.2003.10.012
  • Dachler, M. & Pelzmann, H. (1999). Arznei- und Gewürzpflanzen, Österreichischer Agrarverlag, Klosterneuburg, 2. Auflage.
  • Domokos, J. & Perédi, J. (1993). Studies on the seed oils of basil (Ocimum basilicum L.) and summer savory (Satureja hortensis L.). Acta Hortic. 344, 312-314. https://doi.org/10.17660/ActaHortic.1993.344.35
  • Egata, D.F., Geja, W. & Mengesha, B. (2017). Agronomic and bio-chemical variability of Ethiopian sweet basil (Ocimum basilicum L.) accessions. Academ. Res. J. Agric. Sci. Res. 5, 489-508. https://doi.org/10.14662/ARJASR2017.078
  • Ertekin, İ., Atış, İ. & Yılmaz Ş. (2020). The effects of different organic fertilizers on forage yield and quality of some vetch species. MKU J. of Agric. Sci. 25, 243-255. https://doi.org/10.37908/mkutbd.739805
  • Ertekin, İ., Atış, İ., Yılmaz, Ş., Can, E., & Kızılşimşek M. (2019). Comparison of shrub leaves in terms of chemical composition and nutritive value. KSU J. Agric. and Nat. 22, 781-786. https://doi.org/10.18016/ksutarimdoga.v22i45606.530946
  • Ertekin, İ., Çeliktaş, N., Can, E. & Kızılşimşek M. (2017). Silage quality and nutritional features determination for alfalfa by FT-NIRS. KSU J. Nat. Sci. 20, 88-92. https://doi.org/10.18016/ksudobil.348931
  • Ertekin, İ. & Kızılşimşek, M. (2020). Effects of lactic acid bacteria inoculation in pre-harvesting period on fermentation and feed quality properties of alfalfa silage. Asian Australas. J. Anim. Sci. 33, 245-253. https://doi.org/10.5713/ajas.18.0801
  • Golparvar, A.R., Ghasemi-Pirbalouti, A. & Madani H. (2006). Genetic control of some physiological attributes in wheat underdrought stress conditions. Pak. J. Biol. Sci. 9, 1442-1446. https://scialert.net/abstract/?doi=pjbs.2006.1442.1446
  • Gowda, M.P., Dorajeerao, A.V.D., Madvai, M. & Suneetha D.R.S. (2019). A study on genetic variability for yield and its attributes in sacred basil (Ocimum tenuiflorum L.). J. Crop Weed 15, 1-6. https://doi.org/10.22271/09746315.2019.v15.i3.1227
  • Idris, A.A., Nour, A.H., Ali, M.M., Erwa, I.Y., Ishag, O.A.O. & Nour A.H. (2020). Physicochemical properties and fatty acid composition of Ocimum basilicum L. seed oil. Asian J. Phys. Chem. Sci. 8, 1-12. https://doi.org/10.9734/ajopacs/2020/v8i130104
  • Kadam, P.V., Yadav, K.N., Shivatare, R.S., Bhilwade, S.K. & Patil M.J. (2012). Comparative studies on fixed oil from Ocimum sanctum and Ocimum basillicum seeds. Inventi Rapid: Planta Activa 4, 1-5. https://www.researchgate.net/publication/306393614
  • Kakaraparthi, P.S., Srinivas, K.V.N., Kumar, J.K. & Kumar A.N. (2015). Composition of herb and seed oil and antimicrobial activity of the essential oil of two varieties of Ocimum basilicum harvested at short time intervals. J. Plant. Dev. 22, 59-76. https://plant-journal.uaic.ro/docs/2015/7.pdf
  • Kizilsimsek, M., Ozturk, C., Yanar, K., Ertekin, I., Ozkan, C.O. & Kamalak A. (2017). Associative effects of ensiling soybean and corn plant as mixtures on the nutritive value, fermentation and methane emission. Fresenius Environ. Bull. 26, 5754-5760. https://www.researchgate.net/publication/320563801
  • Kolsarıcı, Ö., Gür, A., Başalma, D. İşler, N. & Kaya, M.D. (2005). Yağlı tohumlu bitkiler üretimi. Türkiye Ziraat Mühendisliği VI. Teknik Kongresi 3-7 Ocak 2005. Milli Kütüphane, Ankara. 1. Cilt, 409-429. https://kutuphane.tarimorman.gov.tr/vufind/Record/1177118
  • Leilah, A.A., & Al-Khateeb S.A. (2005). Statistical analysis of wheat yield under drought conditions. J. Arid Environ. 61, 483-496. https://doi.org/10.1016/j.jaridenv.2004.10.011 Matthaus, B., Vosmann, K., Pham, L.Q. & Aitzetmüller K. (2003). FA and tocopherol composition of vietnamese oilseeds. J. Am. Oil Chem.' Soc. 80, 1013-1020. https://doi.org/10.1007/s11746-003-0813-y
  • Mostafavai, S., Gharneh, H.A. & Miransari, M. (2019). The phytochemical variability of fatty acids in basil seeds (Ocimum basilicum L.) affected by genotype and geographical differences. Food Chem. 276, 700-706. https://doi.org/10.1016/j.foodchem.2018.10.027
  • Motojest, O., Ogunlaja, S. & Amos, O. (2011). Variation in lipid composition of the seed oil Parinari polyandra Benth. Asian J. Appl. Sci. 4, 195-201. https://doi.org/10.3923/ajaps.2011.195.201 Nassar, M.A., El-Segai, M.U. & Mohamed S.N. (2013). Botanical studies on Ocimum basilicum L. (Lamiaceae). Res. J. Agric. Biol. Sci. 9, 150-163. https://scholar.cu.edu.eg/?q=usamasegai/publications/botanical-studies-ocimum-basilicum-l-lamiaceae
  • Nour, A.H., Elhussein, S.A., Osman, N.A. & Nour, A.H. (2009). Characterization and chemical composition of fixed oil of fourteen basils (Ocimum basilicum) accessions grown in Sudan. Int. J. Chem. Technol. 1, 52-58. https://dx.doi.org/10.3923/ijct.2009.52.58
  • Rezapour, R., Tarzi, B.G. & Movahed S.(2016). The effect of adding sweet basil seed powder (Ocimum basilicum L.) on rheological properties and staling of baguette bread. J. Food Biosci. Technol. 6, 41-46. https://jfbt.srbiau.ac.ir/article_8909_b128abae50248cb36ba53fd3f012b1cc.pdf
  • Sadeghi, S., Rahnavard, A. & Ashravi Z.Y. (2009). The effect of plant-density and sowing-date on yield of Basil (Ocimum basilicum L.) in Iran. J. Agric. Sci. Technol. 5, 413-422. http://ijat-aatsea.com/pdf/Nov_v5_n2_09/19-IJAT2008_26F.pdf
  • Sarfraz, Z., Anjum, F.M., Khan, M.I., Arshad, M.S. & Nadeem, M. (2011). Characterization of basil (Ocimum basilicum L.) parts for antioxidant potential. Afr. J. Food Sci. 2, 204-213. http://www.interesjournals.org/AJFST
  • Small, E. (2006). Culinary herbs, NRC Research Press, Ottawa, 2. Auflage. https://link.springer.com/chapter/10.1007/978-3-030-30314-3_15
  • Tabasi, S.N. & Razavi S.A. (2017). Functional properties and applications of basil seed gum: An overview. Food Hydrocoll. 73, 313-325. https://doi.org/10.1016/j.foodhyd.2017.07.007
  • Tarchoune, I., Baâtour, O., Harrathi, J., Hamdaoui, G., Lachaâl, M,. Ouerghi, Z. & Marzouk, B. (2013). Effects of two sodium salts on fatty acid and essential oil composition of basil (Ocimum basilicum L.) leaves. Acta Physiol. Plant. 35, 2365-2372. http://dx.doi.org/10.1007/s11738-013-1271-4
  • Türkmen, M. & Koçer, O. (2021). Variation of components in laurel (Laurus nobilis L.) fixed oil extracted by different methods Int. J. Chem. Technol., 5 (2), 167-171. https://doi.org/10.32571/ijct.1006137
  • Yaldiz, G. & Camlica M. (2020). Agro-morphological and phenotypic variability of sweet basil genotypes for breeding purposes. Crop Sci., 61, 621-642. https://doi.org/10.1002/csc2.20391
  • Yılmaz, Ş., Hür, N. & Ertekin İ. (2018). Determination of forage yield and quality in some selected bermudagrass (Cynodon dactylon (L.) Pers. var. dactylon) lines. MKU J. Agric. Fac. 23, 232-241. https://dergipark.org.tr/tr/pub/mkuzfd/issue/41577/419818
  • Zhang, J.L., Zhang, S.B. Zhang, Y.P. Kitajim K. (2015). Effects of phylogeny and climate on seed oil fatty acid composition across 747 plant species in China. Ind. Crops Prod. 63, 1-8. http://sourcedb.kib.cas.cn/yw/papers/201603/t20160329_4576068.html