Zayıf kaya kütlelerinde açılan tünellerde ampirik ve mümerik yöntemlerle duraylılık analizi

Zayıf kaya kütlelerinde açılacak tünellerin tasarımı, mühendislik jeolojisi açısından bazı zorluklar sunmaktadır. Tasarım aşamasında yapılacak küçük bir hata, kazı aşamasında maliyeti yüksek ve zaman alıcı sorunlara yol açabilmektedir. Bu tür ciddi sorunlarla karşılaşmamak için zayıf kaya kütlelerinde açılacak tünellerin, tasarım aşamasında, en uygun ve ekonomik kazı yöntemine göre projelendirilmesi gerekmektedir. Bu çalışmada, Cankurtaran (Hopa-Artvin) tünelinin güzergahında yüzeylenen Paleosen yaşlı Şenkaya Sırtı formasyonu’na ait ince tabakalı marnların duraylılığı, ampirik ve nümerik yöntemler kullanılarak incelenmiştir. İlk önce, ISRM (1981) tanımlama kriterleri esas alınarak marnların içerdiği süreksizlerin özellikleri ve kaya malzemesinin jeomekanik özellikleri belirlenmiştir. İkinci aşamada, marnlar RMR, Q ve GSI sistemleri ile sınıflandırılmış ve kütle özellikleri tespit edilmiştir. Son aşamada ise marnlarda açılması planlanan tünelin duraylılığı, Singh vd. (1992), Goel vd. (1995), Bhasin ve Grimstad (1996) kriterleri ve Sonlu Eleman Yöntemi (FEM) yardımıyla araştırılmıştır. Yapılan analizler sonucunda güvenlik sayısı değerinin 0.08 ile 1.43 arasında değiştiği ve tünelde duraysızlık sorunuyla karşılaşma riskinin olabileceği sonucuna varılmıştır.

Stability analyses of tunnels excavated in weak rock masses using empirical and numerical methods

In terms of geological engineering, tunnel design in weak rock masses presents some challenges. A small misinterpretation in the design stages can lead to costly and time-consuming problems at the construction phases. To avoid serious problems of these kinds, tunnels excavated in weak rock masses should be projected with the most suitable and economical excavation method in design stage. In this study, stability of the thin-bedded marls belong to Paleocene aged Şenkaya Sırtı formation, outcropped on the route of Cankurtaran (Hopa-Artvin) tunnel, was investigated using empirical and numerical methods. Firstly, the properties of the discontinuities in the marls and geomechanical parameters of intact rock material were determined based on the description criteria of ISRM (1981). In the next stage, marls were classified by using the RMR, Q and GSI systems and rock mass properties were determined. In the final stage, the stability of the tunnel, planned to be excavated in the marls, was investigated by using the criterion of Singh et al. (1992), Goel et al. (1995), Bhasin and Grimstad (1996) and Finite Element Method (FEM). As a result of the analyses, it was concluded that the factor of safety value varies between 0.08 and 1.43 and there may be a risk of instability problem in the tunnel.

___

  • ASTM (American Society for Testing and Materials), 2005. Laboratory determination of pulse velocities and ultrasonic elastic constants of rock, ASTM Publications, 7 p.
  • Aydan, Ö., Akagi, T., Kawamoto, T., 1993. Squeezing potential of rocks around tunnels; theory and prediction. Rock Mechanics and Rock Engineering, 26 (2), 137-163.
  • Barla, G., 1995. Squeezing rocks in tunnels. ISRM News Journal, 2 (3-4), 44-49.
  • Barton, N., Lien, R., Lunde, J., 1974. Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, 6, 189-239.
  • Bhasin, R., Grimstad, E., 1996. The use of stress- strength relationship in the assessment of tunnel stability. Tunnelling and Underground Space Technology, 11 (1), 93-98
  • Bieniawski, Z.T., 1989. Engineering Rock Mass Classifications. Wiley, New York, 251 p.
  • Cai, M., Kaiser, P., K., Tasaka, Y., Minami, M., 2007. Determination of residual strength parameters of jointed rock masses using the GSI system. International Journal of Rock Mechanics and Mining Science, 4 (2), 247-265.
  • Carranza-Torres, C., Fairhurst, C., 1999. The elasto- plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences, 36 (6), 777- 809.
  • Carranza-Torres, C., Fairhurst, C., 2000. Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion. Tunnelling and Underground Space Technology, 15 (2), 187- 213.
  • Çapkınoğlu, Ş., 1981. Borçka-Çavuşlu (Hopa) arasının jeolojisi. K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon, Yüksek Lisans Tezi, 36 s (yayımlanmamış).
  • Fenner, R. 1938. Untersuchungen zur erkenntnis des gebirgsdrucks. Glückauf, 74 (32), 681-695.
  • Goel, R.K., Jethwa, J.L., Paithankar, A.G., 1995. Indian experiences with Q and RMR systems. Tunnelling and Underground Space Technology, 10 (1), 97-109.
  • Güven, İ.H., 1993. Doğu Pontidler’in jeolojisi ve 1/250.000 ölçekli komplikasyonu. MTA, Ankara (yayımlanmamış).
  • Hoek, E., Diederichs, M.S., 2006. Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Science, 43, 203-215.
  • Hoek, E., Kaiser, P.K., Bawden, W.F., 1995. Support of underground excavations in hard rock. Balkema, Rotterdam, 215 p.
  • Hoek, E., Carranza-Torres, C., Corkum, B., 2002. Hoek-Brown failure criterion 2002 edition. Proceedings of the NARMS-TAC 2002, Mining Innovation and Technology, Toronto, Canada, 267-273.
  • ISRM (International Society for Rock Mechanics), 1977. ISRM suggested methods: rock characterization, testing and monitoring. Pergamon Press, London, 211 p.
  • ISRM (International Society for Rock Mechanics), 1981. ISRM suggested methods: the quantitative description of discontinuities in rock masses. Pergammon Press, Oxford.
  • ISRM (International Society for Rock Mechanics), 1985. Suggested method for determining point load strength. International Journal of Rock Mechanics and Mining Sciences and Geomechanics, Abstracts, 2 (22) 53-60.
  • Kaya, A., 2012. Cankurtaran (Hopa-Artvin) tünel güzergahının ve çevresinin jeoteknik açıdan incelenmesi. K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon, Doktora Tezi, 185 s (yayımlanmamış).
  • Marinos, P., Hoek, E., 2000. GSI: A geologically friendly tool for rock mass strength estimation, International Proceedings of the GeoEng2000 at the international conference on geotechnical and geological engineering, Melbourne, Technomic Publishers, Lancaster, 1422-1446.
  • Palmström, A., 1982. The volumetric joint count-a useful and simple measure of the degree of jointing,. 4th International Congress of the IAEG, November, New Delhi, Proceedings book, 221-228.
  • Palmström, A., 1985. Application of the volumetric joint count as a measure of rock mass jointing. International Symposium on Fundamentals of Rock Joints, September, Sweden, Proceedings book: 103-110.
  • Palmström, A., 1996. RMi-A system for rock mass strength for use in rock engineering. Journal of Rock Mechanics and Tunnelling, 2, L, 69-108.
  • Priest, S.D., Hudson, J.A., 1976. Discontinuity spacing in rock. International Journal of Rock Mechanics and Mining Sciences and Geomechanics, Abstracts, 13, 135-148.
  • Rocscience, 2002. Roclab v1.0 rock mass strength analysis using the generalized Hoek-Brown failure criterion. Rocscience Inc., Toronto, Ontario, Canada.
  • Rocscience, 2008. Phase2 v7.0 finite element analysis for excavations and slopes. Rocscience Inc., Toronto, Ontario, Canada.
  • Sheorey, P.R., Murali, M.G., Sinha, A., 2001. Influence of elastic constants on the horizontal in situ stress. International Journal of Rock Mechanics and Mining Science, 38 (1), 1211-1216.
  • Singh, B., Jethwa, J.L., Dube, A.K., Singh, B., 1992. Correlation between observed support pressure and rock mass quality. Tunnelling and Underground Space Technology, 7 (1), 59-74.
  • Sönmez, H., Ulusay, R., 2002. A discussion on the Hoek-Brown failure criterion and suggested modification to the criterion verified by slope stability case studies. Yerbilimleri Dergisi, 26, 77-9.
  • Sönmez, H., Gökçeoğlu, C., Nefeslioğlu, H.A., Kayabaşı, A., 2006. Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation. International Journal of Rock Mechanics and Mining Sciences, 43, 224-235.