Petrol türevleri tarafından kirlenmiş akiferlerde uygulanan yerinde iyileştirme teknolojileri

Yaşamımız için gerekli olan enerji ihtiyacının büyük bir kısmını karşıladığımız petrol türevlerinin, kaza ve sızıntı gibi nedenlerle oluşturduğu yeraltı suyu kirlilikleri, gerek insan gerekse çevre sağlığı açısından çok ciddi sorunlar doğurmaktadır. Temelde iki ana gruba ayrılan petrol türevlerinden birincisi, suda yüzen ve hafif susuz faz sıvılar olarak adlandırılan bileşenlerdir. İkincisi ise, sudan daha yoğun olan ve ağır susuz faz sıvılar olarak adlandırılan petrol türevleridir. Hafif faz sıvıların oluşturduğu kirlilikler ağır susuz faz sulara göre göreceli olarak daha kolay bir şekilde temizlenebilirken, ağır susuz faz suların temizlenmesi için daha karmaşık temizleme yöntemlerinin kullanılması gerekmektedir. Akiferin suya doygun ve doygun olmayan zonlarmda oluşabilen petrol türevi kirliliklerinin temizlenmesi amacıyla geliştirilen çeşitli yöntemler bulunmaktadır. Bunlar arasında en yaygın olanları; gaz enjeksiyonu, toprak gazı ekstraksiyonu, yönlü kuyular, kuyu içi havalandırma, ikili faz ekstraksiyonu, kimyasal oksidasyon, termal iyileştirme, çatlak geliştirme ve geçirgen reaktif bariyer yöntemleridir. Temizleme işleminin etkin bir şekilde yapılabilmesi için, herhangi bir yöntem uygulanmadan önce yapılacak en önemli şey akifer ve kirletici karakteristiklerinin ve kirletici yayılımınm belirlenmesi olmalıdır. Her bir yöntem, kirlenmiş akifer özelliklerine göre belirli avantajlar içerirken, yine akiferin özelliklerine bağlı olarak her birinin belirli dezavantajları da bulunmaktadır. Bundan dolayı, petrol kirliliği gözlenen akiferlerde çoğu zaman tek bir yöntem yerine iki veya daha fazla yöntemin birlikte uygulanması daha etkin bir temizleme sağlamaktadır.

In-situ remediation technologies applied for petroleum hydrocarbon contaminated aquifers

Petroleum hydrocarbons are used to meet a big portion of energy demand that is needed to sustain the human life. Accidental release and leakage of petroleum hydrocarbons may cause groundwater contamination and can have extremely serious consequences from both human and environmental health perspectives. Basically, petroleum hydrocarbons can be divided in two major groups. First group is called light non-aqueous phase liquids which float on water. Second group of petroleum hydrocarbons is calleddensenon-aqueousphase liquids and they are denser than water. Contaminations caused by light non-aqueous phase liquids can be relatively more easily remediated when compared to dense non-aqueous phase liquids and contaminations caused by dense non-aqueous phase liquids generally require application of more complex remediation technologies. There are different methods exist for the remediation of petroleum hydrocarbon contamination in the saturated and unsaturated zones of the aquifers. Among these, most frequently used ones are; gas/air injection, soil vapor/gas extraction, directional wells,in-well aeration, dual phase extraction, chemical oxidation, thermal treatment, fracturing enhancement and permeable reactive barrier technologies. Before the application of any method, the most important thing to do is to define aquifer and contaminant characteristics and spatial extent of the contaminant for an effective treatment process. Each one of these methods has several advantages and disadvantages that are resulted directly from properties of the contaminated aquifers. For this reason, in the petroleum hydrocarbon contaminated aquifers generally not a single method is used but a combination of two or more methods are applied for a more effective treatment.

___

  • Adams, J.A. and Reddy, K.R., 2000. Removal of dissolved- and free-phase benzene pools from ground water using in situ air sparging: Journal of Environmental Engineering, ASCE, 126 (8), 697-707.
  • Anderson, W.C., 1995. Vacuum vapor extraction: WASTECH Innovative site remediation technology series, Vol. 8. American Academy of Environmental Engineers, Annapolis, MD., 224 p. Banerjee, P., 1993. Technology evaluation and applications analysis report: University of Cincinnati/Risk Reduction Engineering Laboratory - Hydraulic fracturing technology: U.S. Environmental Protection Agency, Washington, D.C., EPA/540/R-93/505 (NTISPB94100161), 160 p.
  • Barnes, D.L. and McWhorter, D.B., 1995. Mechanics of vacuum-enhanced recovery of hydrocarbons: In: R.E. Hinchee, J.A. Kidel and H.J. Reisinger (eds), Applied bioremediation of petroleum hydrocarbons. Battelle Press, Columbus, OH, 361-370.
  • BATTELLE, 1997. Engineering evaluation and cost analysis for bioslurper initiative (A005), Columbus, Ohio, 87 p.
  • Bedient, P.B., Rifai, H.S. and Newell, C.J., 1999. Ground water contamination: Transport and remediation (2nd Edition). Prentice-Hall, Upper Saddle River, NJ, 604 p.
  • Blake, S., Hockman, B. and Martin, M., 1990. Applications of vacuum dewatering techniques to hydrocarbon remediation: In: Proceedings of NWWA/API Conference on Petroleum hydrocarbons and organic chemicals in ground water: Prevention, detection, and restoration. October 31 -November 2, Houston, Texas, 211 -226.
  • Blake, S.B. and Gates, N.M., 1986. Vacuum enhanced hydrocarbon recovery: A case study: In: Proceedings of NWWA/API Conference on petroleum hydrocarbons and organic chemicals in ground water: Prevention, detection, and restoration. November 12-14, Houston, Texas, 709-721.
  • Borden, R.C., 1994. Natural bioremediation of hydrocarbon-contaminated ground water. Handbook of Bioremediation, Lewis Pub., Boca Raton, FL, 177-199.
  • Brown, R. and Jasiulweicz, F., 1992. Air sparging: A new model for remediation: Pollution Engineering, 52-55.
  • Brown, R.A., Hicks, R.J. and Hicks, P.M., 1994. Use of air sparging for in situ bioremediation: In: R.E. Hinchee (ed), Air sparging for site remediation. Lewis Publishers, Boca Raton, FL, 38-55. Bruce, L., Hockman, B., James-Deanes, R., King, J. and Laws, D., 1992. Vacuum recovery barrier wall system dewaters contaminated aquifer: A solution based on proper evaluation of hydrogeologic parameters: In: Proceedings of the NGWA/API Conference on petroleum hydrocarbons and organic chemicals in ground water: Prevention, detection, and restoration. November 4-6, Houston, Texas, 303-311.
  • Chapelle, F.H., 1993. Ground-water microbiology and geochemistry. John Wiley, New York, 424 p.
  • Chapelle, F.H., 1999. Bioremediation of petroleum hydrocarbon-contaminated ground water - The perspectives of history and hydrogeology: Ground Water, 37(1), 122-132.
  • Connolly, M., Gibbs, B. and Keet, B., 1995. Bioslurping applied to a gasoline and diesel spill in fractured rock: In: R.E. Hinchee, J.A. Kittel and H.J. Reisinger (eds), Applied bioremediation of petroleum hydrocarbons. Battelle Press, Columbus, OH, 371-377.
  • Davis, E.L., 1997. How heat can enhance in-situ soil and aquifer remediation: Important chemical properties and guidance on choosing the appropriate technique: Robert S. Kerr Environmental Research Laboratory, EPA/540/S-97/502, Washington, DC.
  • Department of Defense, 2002. Multi-site air sparging, Battle Press, Columbus, Ohio, 105p.
  • DiGiulio, D.C. and Cho, J.S., 1990. Conducting field tests for evaluation of soil vacuum extraction application: In: Proc. Fourth Natl. Outdoor Action Conf. on Aquifer restoration, ground water monitoring, and geophysical methods. Natl. Ground Water Assoc, Dublin, OH, 587-601.
  • EPA, 1994. Assessing UST corrective action technologies: Lessons learned about in situ air sparging at the Denison Avenue Site, Cleveland, Ohio, EPA/600/R-95/Q40,98 p.
  • EPA, 1998. Permeable reactive barrier technologies for contaminant remediation, EPA/600/R-98/125,94p. EPA, 2005. A citizen's guide to in situ thermal treatment methods, http ://www. envirotools. org/factsheets/Rem ediation/insitutherm. shtml
  • ESTCP, 2001. Use of cometabolic air sparging to remediate chlorethene-contaminated ground water aquifers, ESTCP cost and performance report (CU-9810), U.S. Department of Defense, 51 p.
  • ESTCP, 2003. Evaluating the longevity and hydraulic performance of permeable reactive barriers at Department of Defense sites, Cost and Performance Report (CU-9907), U.S. Department of Defense, 57 p.
  • Fetter, C.W., 1999. Contaminant hydrogeology (2nd Edition). Prentice Hall, Upper Saddle River, NJ, 500 p.
  • Gavaskar, A.R., Gupta, N., Saas, B.M., Janosy, R.J. and O'Sullivan, D., 1988. Permeable barriers for groundwater remediation: Design, construction, and monitoring. Battle Press, Columbus, OH.
  • Gillham, R.W. and O'Hannesin, S.F., 1992. Metal-catalyzed abiotic degradation of halogenated organic compounds: In: I AH Conference, Modern trends in hydrogeology, Hamilton, Ontario, May 10-13, 1992. International Association of Hydrogeologists, Markham, Ontario, Canada, 94-103.
  • Gonen, O. and Gvirtzman, H., 1997. Laboratory-scale analysis of aquifer remediation by in-well vapor stripping: 1. Laboratory results: Journal of Contaminant Hydrology, 29, 23-39.
  • Gvirtzman, H. and Gorelick, S., 1992. The concept of in-situ vapor stripping for removing VOCs from groundwater, Transport in Porous Media 8. Kluwer Academic Publishers, Netherlands, 71 -92.
  • GWRTAC, 1996. Treatment walls: Technology evaluation report TE-96-01,38 p.
  • GWRTAC, 1997. In-well vapor stripping, Technology overview report TO-97-01,17p
  • GWRTAC, 2000. Technology status report hydraulic, pneumatic and blast-enhanced fracturing, Pittsburgh, PA, 48 p.
  • Hinchee, R.E. 1994. Air sparging for site remediation, Columbus, Ohio, CRC Press.
  • ITRC (Interstate Technology & Regulatory Council). 2005. Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater (2nd Edition): Interstate Technology & Regulatory Council, In Situ Chemical Oxidation Team, Washington, D.C., 172 p. Available on the Internet at http://www.itrcweb.org.
  • Johnson, P.C., 1998. Assessment of the contributions of volatilization and biodegradation to in-situ air sparging performance: Environmental Science and Technology, 32(2), 276-281.
  • Johnson, R.L., Johnson, P.C., McWhorter, D.B., Hinchee, R.E. and Goodman, I., 1993. An overview of in situ air sparging: Ground Water Monitoring and Remediation, 13(4), 127-135.
  • Leonard, W.C. and Brown, R.A., 1992. Air sparging: An optimal solution: In: Proceedings of the Conference on Petroleum hydrocarbons and organic chemicals in ground water: Preventive, detection, and restoration. National Groundwater Association, Westerville, Ohio, 349-363.
  • Marley, M.C., Hazebrouck, D.J. and Walsh, M.T., 1992. The application of in-situ air sparging as an innovative soils and groundwater remediation technology: Ground Water Monitoring Review, 12(2), 137-145.
  • Place, M., Hoeppel, R., Chaudhry, T, McCall, S., and Williamson, T., 2003. Application guide for bioslurping principles and practices of bioslurping addendum: use of pre-pump separation for improved bioslurper system operation, 18 p.
  • Reynolds, G.W, Hoff, J.T. and Gillham, R.W, 1990. Sampling bias caused by materials used to monitor halocarbons in groundwater: Environmental Science and Technology, 24(1), 135-142.
  • Rifai, H., Borden, R.C., Wilson, J.T. and Ward, C.H., 1995. Intrinsic bioattenuation for subsurface restoration, intrinsic bioremediation. Battelle Press, Columbus, OH, 1-30.
  • Riser-Roberts, E., 1992. Bioremediation of petroleum contaminated sites. CRC Press, 197p.
  • Schnarr, M., Truax, C., Farquhar, G., Hood, E., Gonullu, T. and Stickney, B., 1998. Laboratory and controlled field experiments using potassium permanganate to remediate trichloroethylene and perchloroethylene DNAPLs in porous media: Journal of Contaminant Hydrology, 29,205-224.
  • Siegrist, R.L., 1998. In situ chemical oxidation: Technology features and applications: Conference on advances in innovative ground-water remediation technologies. Atlanta, GA. 15 December 1998. Ground-water Remediation Technology Analysis Center. U.S. EPA Technology Innovative Office.
  • Smith, L.A. and Hinchee, R.E., 1993. In situ thermal technologies for site remediation. Lewis Publishers, Ann Arbor, MI, 224 p.
  • WHO (World Health Organization), 1998. Draft third edition of the WHO Guidelines for Drinking-Water Quality.
  • www.frtr.gov/matrix2/section4/D01-4-30.html
  • www. frtr. gov/matrix2/section4/D01-4-36 .html