Jeotermal Suların Rezervuar Sıcaklığının Tahmininde Kullanılan Jeotermometre Hesaplamaları İçin Bilgisayar Programı

Jeotermal suların rezervuar sıcaklığının belirlenmesinde kullanılan en önemli yöntemlerden biri jeotermometrelerdir. Jeotermometre eşitliklerinde termal suyun rezervuar kayaç etkileşimi ile kazandığı kimyasal içerik kullanılmaktadır. Rezervuar sıcaklığının kaç derece olabileceğini belirlemek, termal suyun ekonomik olarak işletilmesi ve geliştirilmesi açısından oldukça önemlidir. Katyon, silis, gaz, izotop vb. bir çok jeotermometre türü olmasına karşın örneklemesi, analizi ve değerlendirilmesi kolay olduğundan dolayı genellikle rezervuar sıcaklığının tahmininde katyon ve silis jeotermometreleri tercih edilmektedir. Bu çalışma kapsamında Microsoft Visual Basic 6.0 programlama dilinde hazırlanan bilgisayar programının amacı katyon ve silis jeotermometre eşitlikleri ile termal suyun rezervuar sıcaklığını belirlemektir. Jeotermometre sonuçlarının yanı sıra suyun tipini gösteren majör iyon sıralaması, analiz doğruluğunu belirten majör iyon dengesi ve termal suya Na-K jeotermometresinin uygulanıp uygulanamayacağının belirteci olan olgunluk indeksi de bu program tarafından hesaplanmaktadır. Jeotermometrelerin uygulanmasında ve sonuçlarının değerlendirilmesinde, jeotermometrenin temel aldığı mineral bileşiminin alandaki rezervuar kayaç bileşimine uygunluğu, termal su ile kayaç arasında kimyasal dengenin sağlanmış olması, termal suya soğuk suyun karışması, termal suyun yüzeye yükselirken uğradığı kimyasal değişikler vb. gibi süreçler hesaplanan rezervuar sıcaklığının güvenilirliği açısından daima göz önünde bulundurulmalıdır.

A Computer Programme for Geothermometer's Calculations for the Estimation the Reservoir Tempcraiurc of the Gcothermal Watcrs

Geothermometers are one ofthe most important methods used for determining the geothermal water reservoir temperature. Chemical content ofthe thermal water that was acquired by the waterrock interaction is used in the geothermometer equations. Determination of possible reservoir temperature ofthe thermal water is quite important for development and operation of the thermal waters. in spite ofbeing lots of geothermometer type like cation, silica, gas and isotope, generally cation and silica geothermometers arepreferred because their analyses and evaluations are easy. in the scope ofthis study, a computer programme has been prepared by using ofthe Microsoft Visual Basic 6.0 programming language and aim of this programme is determining the thermal water reservoir temperature by silica and cation geothermometer equations. Majör ion order which denotes the water type; majör ion balance which indicates the accuracy ofthe water analyses; and maturity index which indicates the application ofthe Na-K geothermometers are suitable or not to thermal water are determined by this programme in addition to the geothermometer calculations. Appropriateness of the reservoir rock mineral composition to the based mineral used in geothermometer equations, the chemical equilibrium behveen water and rock, cold water mixing, chemical changes in the thermal water when it was ascending, etc. must always be taken into consideration during the geothermometer applications, in terms ofevaluations and reliability.

___

  • Andresdottir, A. and Arnorsson, S., 1995. Studies of the chemical evolution of natural waters in The Hrepper-Land geothermal field, Iceland: an aid to geothermometr y interpretation. Proceedings of the World Geothermal Congress, 18-31 May 1995, International Geothermal Association (IGA), Vol. 2, Florence, Italy, 1001-1006.
  • APHA (American Public Health Association), AWWA (American Water Works Association) and WPCF (Water Pollution Control Federation), 1989. Standard Methods for The Analysis of Water and Waste Water. APHA publication, 17th Edition, Washington DC, 1133 pp.
  • AqQA, 2003. Quality assurance and presentation graphics for water analyses. RockWare Inc., 2221 East Street, Golden C O, 80401 , USA, Web page : www.rockware.com.
  • Arnorsson, S., Sigurdsson, S. and Svavarsson, H, 1982. The chemistry of geothermal waters in Iceland, I. calculation of aqueous speciation from 0° to 370 °C. Geochimica et Cosmochimica Acta, 46, 1513-1532.
  • Arnorsson, S., 1983. Chemical equilibria in Icelandi c geotherma l systems, implications for chemical geothermal investigations. Geothermics, 12, 119- 128.
  • Arnorsson, S., Gunnlaugsson, E. and Svavarsson, H., 1983a. The chemistry of geothermal waters in Iceland, II. mineral equilibria and independent variables controlling water composition. Geochimica et Cosmochimica Acta, 47, 547-566.
  • Arnorsson, S., Gunnlaugsson, E. and Svavarsson, H, 1983b. The chemistry of geothermal waters in Iceland, III. chemical geothermometry in geothermal investigations. Geochimic a et CosmochimicaActa, 47,567-577.
  • BOWeil, R., 1989. Geothermal Resources. Elsevier Science Published Ltd., New York, 486 pp.
  • Erkan, Y., 1978. Kayac 01uşturan Önemli Mineralleri n Mikroskopt a incelenmeleri. Cihan Matbaası, Hacettepe Universitesi Yayınları A26, 497 s.
  • Fouillac, C. and Michard, G., 1981. Sodium/lithium ratios in water applied to geothermometr y of geothermal reservoirs. Geothermics, 10,55-70.
  • Foumier, R.O., 1973. Silica in thermal waters: laboratory and field investigations. In: Proceedings of International Symposium o n H y drogeochemsitr y an d Biochemistry , J.W. Clark Co. (Publisher), Vol. 1, Tokyo, 122-139.
  • Fournier , R.O. , 1977 . Chemica l geothermometers and mixing models for geothermal systems. Geothermics, 5,41- 50.
  • Foumier, R.O., 1979. A revised equation for the Na/K geothermometer. Geothermal Resources Council Transactions, 3, 221- 224.
  • Foumier, R.O., 1991. Water geothermometers applied to geothermal energy. In: Application of Geochemistry in Geothermal Reservoir Development, Rome, F.D'amore (Co-ordinator), UNITAR/UNDP Publications, 37-69.
  • Fournier, R.O. and Potter, R.W., 1979. Magnesium correction to the Na-K-Ca chemical geothermometer. Geochimica et CosmochimicaActa, 43,1543-1550.
  • Foumier, R.O. and Potter, R.W., 1982. A revised and expanded silica (quartz) geothermometer. Geoth.Res.Council Bull., 11-10,3-12.
  • Foumier, R.O. and Truesdell, A.H., 1973. An empirical Na-K-Ca geothermometers for natural waters. Geochimic a et Cosmochimica Acta, 37,1255-1275.
  • Giggenbach, W.F., 1980. Geothermal gas equilibria. Geochimica et Cosmochimica Acta, 44,2021-2032.
  • Giggenbach, W.F., 1981. Geothermal mineral equilibria. Geochimica et Cosmochimica Acta, 45,393-410.
  • Giggenbach, W.F., 1988. Geothermal solute equilibria, derivation of Na-K-Mg-Ca geoindicators. Geochimic a e t CosmochimicaActa, 52,2749-2765.
  • Giggenbach, W.F., Gonfiantini, R., Jangi, B.L. and Truesdell, A.H., 1983. Isotopic and chemical composition of Parbatia Valley geothermal discharges, NW Himalaya, India. Geothermics, 12,199-222.
  • Kharaka, Y.K. and Mariner, R.H., 1988. Chemical geothermometers and their application to formation waters from sedimentary basins. In: Thermal History of Sedimentary Basins, N.D.Naeser and T.H.McCollon (ed.), Springer-Verlag, NewYork,99-117.
  • Lindal, B., 1973. Industrial and other applications of geothermal energy. In Geothermal Energy, (ed. H.C.H. Amsterdam), Earth Science, Vol. 12, UNESCO, Paris, 135-148 pp.
  • Nieva, D. and Nieva, R., 1987. Developments in geothermal energy in Mexico-Part Twelve, A cationic composition geothermometer for prospection of ] geothermal resources. Heat Recovery Systems & CHP, 7(3), 243-258.
  • Tonani, F., 1980. Some remarks on the application of geochemical techniques in geothermal exploration. in: Proceedings. Adv. Eur. Geoth. Res., Second Symp., Strasbourg, 428-443.
  • Truesdell, A.H. and Fournier, R.O., 1976. Calculations of deep temperatures in geothermal systems from the chemistry of boiling spring waters of mixed origin, in: Proceedings of 2nd United Nations Symposium on The Development and Use of Geothermal Resources, U.S. Government Printing Office, Vol. 1, Washington, 837-844.