İlk Çağlardan Günümüze Yer Altı Yapıları, Kaya Yapıları ve Kaya Mekaniği

Yer altındaki alanların kullanımı insanlar için antik dönemlere uzanan eski bir alışkanlıktır. Atalarımız, mağaraları vahşi hayattan korunmak için barınak olarak kullandılar, ayrıca değerli mineralleri çıkarmak için kazarak yer altı boşlukları oluşturdular. Bu boşlukları kutsal alan, mezar veya depo olarak kullandılar. Bu kullanım amaçlarına ek olarak, savaşlar sırasında saldırı veya surları geçmek amacıyla tüneller inşa ettiler. Daha sonraları, tüneller yerleşim yerlerine su getirmek veya söz konusu alanları selden korumak amacıyla yapıldı. İlk kez ne zaman kullanıldıkları bilinmemekle birlikte, birbirleriyle bağlantılı olarak inşa edilen yer altı yapıları insanlık tarihi boyunca barınma amacıyla da kullanıldı. Sonraki yüzyıllarda, ulaşım sistemlerine duyulan ihtiyaç nedeniyle yeni kazı tekniklerinin kullanıldığı ulaşım ve iletim tünelleri inşa edildi. Bu dönemde, çoğunluğu kaya ortamda yer alan su geçişi tünelleri, demiryolu tünelleri ve karayolu tünelleri yapıldı. İlk kazılar elle yapılmış olup, daha sonra kolay kazmak için ateşin kullanıldığı bilinmektedir. Bu tekniği, barut, patlayıcılar ve tünel açma makinaları takip etmiştir. Şu veya bu şekilde, eski uygarlıklar kaya mekaniğinin temel prensiplerini kullanmış ve bu prensipleri yer altı yapılarının inşasında uygulamışlardır. Kaya mekaniğinin prensipleri, tüm bu yapıların olmazsa olmaz unsurudur. Bu derlemede, kaya mekaniğinin tarihçesi kısaca anlatılacak, tarihi ve anıtsal yer altı ve kaya yapılarından örnekler sunulacaktır

Underground Structures, Rock Structures and Rock Mechanics from Ancient Era to the Modern Age

Usage of underground space is an old habit for human beings since ancient era. Our ancestors have used caves as a shelter for protection from the wild life and nature, and they excavated caves to extract valuable minerals. They also used them as sanctuaries, tombs or for storage of goods. In addition, they built tunnels to be used as assault systems or to underpass fortifications during ancient warfare. Later on, tunnels were driven to supply water to the towns or to protect the towns from floods. They also built them for communication purposes. Though not knowing the exact time when they were first used, natural underground structures which have several interconnections were also built for underground dwelling purposes through the human history. In the following centuries, due to the need of transportation facilities, transportation tunnels were constructed where new excavation techniques were also used. Navigation canal tunnels, railway tunnels and road tunnels were constructed during that period. All these structures were mostly excavated in rocks. The first excavations were performed manually. Later on, fire technique had been used to excavate more easily. This was followed by the methods in which gunpowder, explosives and tunneling machinery were used. By some means or other, ancient civilizations had used fundamental principles of rock mechanics and applied these principles in the construction of the underground structures. Principles of rock mechanics are the sine qua non for all of these structures and facilities. In this review paper, the history and evaluation of rock mechanics will be given briefly and some examples of historical and monumental underground and rock structures will be presented

___

  • Akoğlu, K. G., Saltık, E. N. C., 2015. Hydric dilation of Mount Nemrut sandstones and its control by surfactants. Journal of Cultural Heritage, 16, 276-283.
  • Akyol V., 2012. Sinop Turizm Potansiyeli (Tourism Potential of Sinop). http://turizm.sinop.edu.tr/ turizm_isletmeciligi_ve_otelcilik_yuksekokulu/ faaliyetler/turizm_durumu.pdf. Accessed 31.12.2015.
  • Alemohammad, S. H., Gharari, S., 2010. Qanat:An ancient invention for water management in Iran. http://hamed.mit.edu/sites/default/files/Qanat_ WHC_2010.pdf. Accessed 09.08.2017.
  • America’s Library, 2016. Mount Rushmore National Memorial a Local Legacy. http://www. americaslibrary.gov/es/sd/es_sd_mount_1.html. Accessed 09.01.2016.
  • Aydan, Ö., Ulusay R., 2003. Geotechnical and geoenvironmental characteristics of man-made underground structures in Cappadocia, Turkey. Engineering Geology, 69, 245-272.
  • Aydan, Ö., Ulusay R., 2013. Geomechanical evaluation of Derinkuyu antique underground city and its implications in geoengineering. Rock Mechanics and Rock Engineering, 46, 731-754.
  • Aydan, Ö., Ulusay R., Tokashiki, N., 2014. A new rock mass quality rating system: Rock mass quality rating (RMRQ) and its application to the estimation of geomechanical characteristics of rock masses. Rock Mechanics and Rock Engineering, 47, 1255-1276.
  • Barton, N. Lien, R., Lunde, J., 1974. Engineering classification of cases for the design of tunnel support. Rock Mechanics 6(4), 189-236.
  • Barton, N., 1976. The shear strength of rock and rock joints. Int. Jour. Rock Mech. Min. Sci. and Geomech. Abstr., 13 (9): 255-279.
  • Barton, N., 2002a. Some New Q-value correlations to assist in site characterization and tunnel design. International Journal of Rock Mechanics and Mining Sciences, 39, 185-216.
  • Barton, N., 2002b. Deformation moduli and rock mass characterization. Tunneling and Underground Space Technology, 17, 221-222.
  • Bieniawski, Z.T.,1973. Engineering classification on jointed rock masses. Trans. South African Inst. Civil Engineering,15: 335-344.
  • Bonapace, P., Eder, M., Galler, R., Moritz, B., Schneider, E., Schubert, W., 2010. NATM The Austrian Practice of Conventional Tunnelling. American Society for Geomechanics, Salzburg, 73 p.
  • Brown, E. T., 2011. Fifty Years of the ISRM and associated progress in rock mechanics. 12th ISRM International Congress on Rock Mechanics.
  • Cai, M., Kaiser, P. K., Uno, H., Tasaka, Y., Minami, M., 2004. Estimation of rock mass deformation modulus and strength of jointed hard rock masses using GSI system. International Journal of Rock Mechanics and Mining Sciences, 41 (1), 3-19.
  • Deere, D. U., Hendron, A. J., Patton, F. D., Cording, E. J., 1967. Design of surface and near surface construction in rock. In Failure and breakage of Rock, Proc. 8th U.S. Symposium Rock Mechanics, New York. Soc. Min. Engr. Am. Inst. Metall. Petrolm.Engrs.,237-302.
  • Erdem, A., 2008. Subterranean space use in Cappdocia: The Uçhisar example. Tunnelling and Underground Space Technology, 23, 492- 499.
  • Evelpidou, N., Figueiredo, T., Mauro, F., Tecim, V., Vassilopoulos, A., 2010. Natural Heritage from East to West. Case studies from 6 EU countries, Verlag Berlin Heidelbarg: Springer.
  • Garry, D., 2012. Handbook of Tunnel Engineering Design, Construction and Risk Assessment. Auris Reference, London, 357 p.
  • Gelişli, K., Seren, A., Babacan, A.E., Çataklı, A., Ersoy, A., Kandemir, R., 2010. The Sumela Monastery slope in Maçka, Trabzon, Northeast Turkey: rock mass properties and stability assessment. Bulletin of Engineering Geology and the Environment. 70, 577-583.
  • Gençtürk, B., Kılıç, S., Erdik, M., Pinho, R., 2007. Assessment of stone arch bridges under static loading using analytical techniques. New Horizons and Better Practices, 43, 1-10.
  • Gökçeoğlu, C., Aksoy, H., 2000. New approaches to the characterization of clay-bearing, densely jointed and weak rock masses. Engineering Geology, 58, 1-23.
  • Goodman, R. E., 1989. Introduction to Rock Mechanics (2nd Edition). John Wiley & Sons, New York, 562 p.
  • Hoek, E. 1983. Strength of jointed rock masses, 23rd. Rankine Lecture. Géotechnique 33(3), 187-223. Hoek, E. 1994. Strength of rock and rock masses, ISRM News Journal, 2(2), 4-16.
  • Hoek, E., 2007. Practical Rock Engineering. https:// www.rocscience.com/learning/hoek-s-corner. Hoek, E. and Bray, J.W., 1974. Rock Slope Engineering. London: Institution of Mining and Metallurgy.
  • Hoek, E. and Brown, E.T. 1980. Empirical strength criterion for rock masses. Journal of the Geotechnical Engineering Division, ASCE 106(GT9), 1013-1035
  • Hoek E. and Brown E.T. 1980. Underground Excavations in Rock . London: Institution of Mining and Metallurgy 527 p.
  • Hoek, E. and Brown, E.T. 1997. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts. 34(8), 1165-1186.
  • Hoek E., Kaiser, P. K., Bawden, W. F., 1995. Support of underground excavations in hard rock. Brookfield: Balkema. Rotterdam, 215 p.
  • Hoek, E., Marinos, P., Benissi, M., 1998. Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses: the case of the Athens Schist Formation. Bulletin of Engineering Geology and the Environment, 57 (2), 151-160.
  • Hoek, E., Wood, D. and Shah, S. 1992. A modified Hoek-Brown criterion for jointed rock masses. Proceedings of the International ISRM Symposium on Rock Characterization, International Society of Rock Mechanics: Eurock ‘92, (J.Hudson ed.). 209-213.
  • Hood, M., Brown, E.T., 1999. Mining rock mechanics: yesterday, today and tomorrow. Proceedings, 9th Congress, International Society for Rock Mechanics, Paris, Balkema: Rotterdam, 3, 1551- 1576.
  • Hoover, H. C., Hoover L. H., 1912. De Re Metallica Translated from the first Latin edition of 1556. The Mining Magazine, London, 641 p..
  • Jaeger, J. C., 2009. Rock Mechanics and Engineering. Cambridge. Cambridge Press. 523 p.
  • Kirman, E., Ulusoy, E., 2005. Paleolitik dönemde doğal yerleşim yeri olarak kullanılan Anadolu mağaraları”. In Proceedings of Turkiye Kuvaterner Sempozyumu TURQUA-V. Istanbul, İTÜ Avrasya Yer Bilimleri Enstitüsü.
  • Lauffer, H., 1958. Gebirgsklassifizierung für den Stollenbau. Geol. Bauwesen, 24: 46-51.
  • Marinos, P., Hoek, E., 2000. GSI: a geological friendly tool for rock mass strength estimation. Proceedings of International Conference on Geotechnical and Geological Engineering, Melbourne, 1422-1440.
  • Marinos, P., Hoek, E., 2001: Estimating the geotechnical properties of heterogenous rock masses such as flysch. Bull. Eng. Geol. Env. 60(2), 85-92.
  • Marinos, V., Marinos, P., Hoek, E., 2005. The geological strength index: applications and limitations. Bulletin of Engineering Geology and the Environment, 64 (1), 55-65 .
  • Marinos, P., Marinos, V., Hoek, E., 2007. Geological Strength Index (GSI) a characterization tool for assessing engineering properties of rock masses. Underground works under special conditions, 13-21.
  • Minisrty of Culture and Tourism, 2017. Sumela Monastery. http://www.kultur.gov.tr/EN,32834/ sumela-monastry.html Accessed 08.01.2016.
  • Osgoui, R. R., Ulusay, R., Ünal, E., 2010. An assistant tool for the geological strength index to better characterize poor and very poor rock masses. International Journal of Rock Mechanics and Mining Sciences, 47, 690-697.
  • Paradise, T. R., 2013. Assessment of tafoni distribution and environmental factors on a sandstone djinn block above Petra, Jordan. Applied Geography, 42, 176-185.
  • Patton, F. D., 1966. Multiple modes of shear failure in rock. Proceedings of 1st International Congress of Rock Mechanics, Lisbon, 1, 509-513.
  • Rihosek, J., Bruthans, J., Masin, D., Filippi, M., Carling, G. T., Schweigstillova, J., 2015.
  • Gravity-induced stress as a factor reducing decay of sandstone monuments in Petra, Jordan. Journal of Cultural Heritage, 19, 415-425.
  • Romana, M., Perucho, A., Olalla, C., 2007. Underground works under special conditions. Taylor & Francis, London, Leiden, New York, Philadelphia, Singapore, 180 p.
  • Salam, M. E. A. E., 2002. Construction of underground works and tunnels in ancient Egypt. Tunnelling and Underground Space Technology, 17, 295- 304.
  • Schmidt, W. 1925. Gefügestatistik. Tschermaks Mineralogische und Petrographische Mitteilungen, 38: 392-423.
  • Singh, M., Kumar, S. V. Waghmare S. A., 2015. Characterization of 6-11th century A.D. decorative lime plasters of rock cut caves of Ellora. Construction and Building Materials, 98, 156-170.
  • Stini, J. 1922. Technische Geologie, 789 p. Stuttgart: Ferdinand Enke.
  • Sönmez, H., Ulusay, R., 1999. A discussion on the Hoek-Brown failure criterion and suggested modification to the criterion verified by slope stability case studies. Yer Bilimleri, 26, 77-99.
  • Sitini, J., 1950. Tunnelbaugeologie. Vienna,Springer. Szechy, K., 1973. The art of tunneling. Akademiaikiado, Budapest.
  • Terzaghi K., 1946. Rock tunneling with steel supports. Youngstown, Ohio. Commercial Sheving Co.
  • The Brunel Museum, 2017. The Thames Tunnel. http://www.brunel-museum.org.uk/history/thethames-tunnel. Accessed 31.05.2017.Topal, T., Doyuran, V., 1997, Engineering geological properties and durability assessment of the Cappadocian tuff. Engineering Geology, 47, 175-187.
  • Topal, T., Doyuran, V., 1998, Analyses of deterioration of the Cappadocian tuff, Turkey. Environmental Geology, 34, 5-20.
  • Topal, T., Deniz B. E., Güçhan, N. Ş., 2015. Decay of limestone statues at Mount Nemrut (Adıyaman, Turkey). International Journal of Architectural Heritage, 9, 44-264.
  • Türkiye Kültür Portalı, 2014. Titus Tüneli ve Beşikli mağara. http://www.kulturportali.gov.tr/turkiye/ hatay/gezilecekyer/titus-tuneli-ve-besiklimagara. Accessed 07.09.2014.
  • Ubierna, J. A. J., 1998. Tunnel heritage in Spain: Roots of the underground. Tunneling and Underground Space Technology, 13 (2), 131-141.
  • Ulusay, R., Özkan, İ., Ünal, E., 1992. Characterization of weak, stratified and clay bearing rock masses for engineering applications. Proceedings of Fractured and Jointed Rock Masses Conference, California, 229-235.
  • Ulusay, R. Sönmez H., 2000. Hoek Brown görgül yenilme ölçütüne ilişkin değişiklik önerileri ve uygulanabilirliği. Jeoloji Mühendisliği Dergisi, 53, 1-14.
  • Ünal, E., Özkan, İ., 1990. Determination of Classification Parameters for Clay-bearing and Stratified Rock Mass. 9th Conference on Ground Control in Mining, Morgantown, USA, 250-259.
  • Ünal, E., Özkan İ., Ulusay, R., 1992. Characterization of weak, stratified and clay bearing rock masses. ISRM Symposium: EUROCK’92 Rock Characterization, London, British Geotechnical Society, 330-335.
  • Ünal, E., 1996. Modified Rock Mass Classification: M-RMR System – Milestones in Rock Engineering. A Jubilee Collection; Z.T. Bieniawski, Balkema, 203-223.
  • Wickham, G.E., Tiedemann, H.R., Skinner, E.H., 1972. Support determination based on geological predictions. International Proceedings on North American Rapid Excavation Tunneling Conference, Chicago, 43-64.
  • Wikimedia Commons-a, 2017. The Eupalinos Tunnel.https://commons.wikimedia.org/wiki/ File:Eupalinian_aqueduct.JPG?uselang=tr. Accessed 31.05.2017.
  • Wikimedia Commons-b, 2017. The Thames Tunnel https://commons.wikimedia.org/ wiki/File:Thamestunnel1840.jpg?uselang=tr. Accessed 31.05.2017.
  • Wikimedia Commons-c, 2017. The Tunnel in İstanbul https://commons.wikimedia.org/ wiki/File:Istanbul_Tunel_Karak%C3%B6y_ Beyo%C4%9Flu.jpg?uselang=tr. Accessed 31.05.2017.
  • Wikimedia Commons-d, 2017. El Deir monastery in the ancient Jordanian city of Petra. https:// commons.wikimedia.org/wiki/File:Petra_ Jordan_BW_43.JPG?uselang=tr. Accessed 31.05.2017.
  • Wikimedia Commons-e, 2017. Ellora Temple. https:// commons.wikimedia.org/wiki/File:Ellora,_The_ Temple_2.jpg?uselang=tr. Accessed 31.05.2017.
  • Wikimedia Commons-f, 2017. Kaymaklı underground city in Capadocia.https://commons.wikimedia. org/wiki/File:Kaymakli_underground_ city_8923_Nevit_Enhancer.jpg?uselang=tr. Accessed 31.05.2017
  • Wikimedia Commons-g, 2017. Nemrut Mountain, head statues.https://commons.wikimedia. org/wiki/File:Heads_on_Mount_Nemrut. JPG?uselang=tr. Accessed 31.05.2017.
  • Wikimedia Commons-h, 2017. Mount Rushmore sculptures. https://commons.wikimedia. org/wiki/Mount_Rushmore_National_ Memorial?uselang=tr#/media/File:Rushmore_2. jpg. Accessed 31.05.2017.