Antalya lîaverten Platosu Yeraltısulannın Kümeleme ve Faktör Analizi ile Sınıflandırılması

Antalya Traverten Platosu yeraltısularına. ait kimyasal ve çevresel izotop verileri "kümeleme" ve '"faktör analizi" istatistiksel yöntemleri kullanılarak değerlendirilmiş ve yeraltısulannın farklılık, ve benzerlikleri, belirlenerek groplandirilmalari yapılmıştır., Antalya. Traverten Platosu'nda yer alan kaynak ve kuyulardan yağışlı dönemde belirlenmiş majör iyon Ca*\ Mg2 \, Na+ , K+ , Cl\ SO**, HCO3-+CO32 - , elektriksel iletkenlik EC , pH, sıcaklık T , çözünmüş oksijen DO , OCX toplam çözünmüş madde miktarı TDS , kısmi karbondioksit basıncı PCÖ2 , doygunluk indisi SI değerleri ile çevresel, izotop içerikleri, kümeleme ve faktör analizi yöntemleri, ile değerlendirilmiştir. Yapılan, değerlendirmeler sonucunda üç farklı grup belirlenmiştir. Bu gruplar, 1. Traverten Platosunun üst: kesiminden çıkan ve uzun geçiş süresine sahip olan. kireçtaşı kaynakları ile alt platoda yer alan Varsak VAR -Düdenbaşı DUD sistemi, 2 Traverten Platösu'nun alt kesiminden çıkan ve kısa geçiş zamanına sahip olan nispeten, genç yeraltısuyu kaynaklan ve 3 yüzey sularından oluşmaktadır. Kümeleme ve faktör analizi ile yapılan değerlendirmelerin benzer sonuçlar1 verdiği ve: aynı tür gruplamanın her iki yöntem, ile elde edildiği belirlenmiştir. Ayrıca yapılan değerlendirmeler sonucu alt traverten platosundan boşalan Düdenbaşı kaynağının,, bölgede^ daha önce yapılmış hidrojeolojik etüt çalışmasında, belirlenenin aksine, üst platodan boşalan. Ktrkgöz kaynakları ile aynı grupta olduğu saptanmıştır.

Classification of The Groundwaters of The Antalya Travertine Plateau by Cluster and Factor Analysis

The aim of this study is to evaluate the isotopic and chemical composition of the water resources heated in Antalya Travertine Plateau by using cluster and factor analysis.. Major ions Ca , Mg ., Na , K » Cf» SO4, HCOs +CÖ3~ „ electrical conductivity EC , dissolved oxygen DO ,,, CO2, total dissolved solid TDS , partial CO2 pressure PCO2 , saturation index SI and environmental isotope values of springs and wells have been used to estimate the similarities and disparities between the water sources., The use of muitivariate statistical analyses., which allows evaluation of a large amount of parameters,, is very helpful in Hydrogeologie analysis of complex groundwater systems. DaUon and Upckurch 1978 , Williams 1982 , Steinhorst and Williams 1985 , Usunoffand Guzman 1989 , Reeve et.al 1996 ,, Helena et.al. 2000 , and the others have emphasized the potential use of the muitivariate analysis techniques for the hydrochemicai interpretations of the groundwater systems. The study area occupies 630 km . The geological structure and the map of the sampling locations are illustrated on Figure 2., The Antalya. Travertine Plateau has a. stepwise morphology. In the upper step, called, as Upper Plateau, there are many springs discharging from the Mesozoic limestone and the travertine,. The most important of these springs are the outlets of the Kırkgöz Spring zone discharging from Mesozoic karstic limestone KGI, KGM, KGO, KGK, KGP . The average discharge rate of these outlets is 15 m/s. The significant springs discharging from the Lower Plateau are Düdenbaşı spring DUD ,, Kemerağzı spring KMÄ , Mağara spring MGR , Ârapsuyu spring ÀRP , and Duraiiler-Oku! spring DUO . The average discharge rate of the Düdenbaşı spring is 17 m/s, whereas the averages of the other springs are between 0.5-2.5 m /s. Another important spring is Hurma spring HRM discharging from Antalya Nappes. The other sampling points in the study area are Bıyıklı BIY and Yağca YGC swallow-holes at the Upper Plateau, Varsak VAR deline, 'Kapuz river KPN , Meydan wells ASO and the Duraliler pumping station DUP , at the Lower Plateau. The chemical,, physical and isotopedata values of these sampling points are given in Table !.. The cluster and factor analysis of the environmental isotopic and hydrochemical data provides the classification of the water sources of the Antalya Travertine Plateau in terms of the ionic composition, the saturation levels and the transit time of the waters. The classification of the standardized isotopic and hydrochemical parameters by cluster analysis is given on Figure 3, while the classification of the water sources with these parameters is given on Figure 4. The parameters are grouped in classes representing i the major ion composition TDSr EC, Cd - HCOs +CO£~ , ii the degree of the saturation with respect to carbonate minerals SI, pH, DO , and Hi the source and the age of the water isotopes, Cl-3 Temp .. Clustering of the water sources results two distinct classes: Upper Plateau groundwaters and Düdenbaşı springs is located in the same class, while all the other Lower Plateau springs are in the second class.. The dotinesfed by Kırkgözler Spring and the Kapuzbaşı surface water are out of these classes. Principal factor analysis provided three principal factors for the processes controlling' the ionic and isotopic composition. These are the total dissolved solids, the degree of the saturation with respect to carbonate minerals and the isotopic composition.. These three factors explain the 95% of the total variance of the parameters.. The correlations of the parameters with the factors are given on Figure 5. The classification with respect to factors indicated that the Kırgözler and Düdenbaşı springs are characterized by high amount of carbonates,, and highdegree of the carbonate saturation,, and higher recharge areas. On the contrary, the Lower Plateau springs are characterized by low amount of carbonates, low saturation levels and lower recharge areas.. The principal factor analy

___

  • Atilla,, Ö.,,, 1996.. Çok Değişkenli İstatistiksel Analiz Teknikleri Kullanılarak Hidroj eokîmy asal Verilerin Değerlendirilmesi,. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Yüksek Mühendislik Tezi, 145 s.
  • Cattel, R.B.,, 1965. Factor Analysis: An. Introduction to Essentials, Biometrics, 21 (1), p. 190-215..
  • Daltan, M. G., Upchurch, S. B., 1978. Interpretation of Hydrochemical Faciès, by Factor Analysis., Ground Water, Vol. 16, No. 4, p. 228-233.
  • Davis,. I... C, 1986. Statistics and Data Analysis in Geology. John Willey & Sons Inc., New York, 646 p.
  • Benizman, C, 1989. Kırkgöz Kaynaklan ve Antalya Traverten Platosunun Hidrojeolojik Etüdü.,. H. Ü. Fen Bil. Ens. Yük. Müh. Tezi, Beytepe, Ankara,, 72
  • DSİ, 1985., Antalya Kırkgöz Kaynaklan ve Traverten Platosu Hidrojeolojik Etüd. Raporu. Devlet Su İşleri Genel Müdürlüğü, Ankara.
  • Günay, G., Tezcan, L., Ekmekçi, M., Atilla, A. Ö., 1995. Present State and Future Trends of Karst Ground Water Pollution, in Antalya Travertine: Plateau. EC- COST65 Project, National. Report for Turkey, H.Ü-UKAM;-Ankara.
  • Günay, Y,, Bölükbaşı, A.S.,, 1981. Antalya-ElmaliKorkuteli-Bucak Arasındaki Beydağlarının Jeolojisi ve Petrol Olanakları. Teknik. Rapor No: 1566, T.P.A.O Güney Arama Müdürlüğü, Ankau., 71 s. (yayımlanmamış).
  • Günay, Y,, Bölükbaşı, A,.S,., Gözeğer, C, İnançlı, İ., 1979,. Batı Toroslarda Antalya-Isparta-Burdur Arasındaki Alanın Jeolojisi ve Petrol Olanakları, Teknik Rapor No: 1391, T.P.A.O Güney Arama Müdürlüğü, Ankara, 71 s. (yayımlanmamış).
  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez,, J.M., and Fernandez,, L., 2000. Temporal Evolution of Groundwater Composition in an Alluvial Aquifer (Pisuerga River, Spain) by Principal Component Analysis, Wat Res. Vol.. 34, No, 3, pp.807-816, Great: Britain.,.
  • Laaksoharfu, M., Skaiman,, C, Skarman, E., 1999.. ' Multivariate Mixing: and Mass Balance (M3) calculations, A New Tool for Decoding Hydrogeochemical Information,, Applied Geochemistry 14, pp. 861-871, Pergamon,, Great Britain.
  • Lawrence, F. W., Upchurch, S. B., 1982., Identification of Recharge Areas Using Geochemical Factor Analysis. Ground Water, Vol. 20, No., 6, p. 680-687,.
  • Poisson,, A., 1978. Recherches Géologiques dans les Taurides Occidentales (Turquie).. These de Docteur Es Sciences,, Universite de Paris-Sud., 795 p.
  • Reeve, A, S., Siegel,, D. L, and Glaser, P. H. 1996, GeocEemical controls on peatland pore water from the Hudson. Bay Lowland: Ä multivariate statistical approach. Journal of Hydrology, 181(1-4): 285-304..
  • Ritzi Jr., R.. W., Wright, S, L., Mann, B., Chen, M., 1993. Analysis of Temporal Variability in. Hydrogeochemical Data Used, for Multivariate Analyses.. Grand Water, Vol. 31, No. 2, p. 221- 229..
  • Robertson,, A., H. F., Woodcock, N. H,, 1982, Sedimentary History of the South-Western Segment of the Mesozoic-Tertiary Antalya Continental Margin, South-Westem Turkey, Eclogae geol, Helv.. 75, p. 517-562
  • Seyhan, E,, Van De Griend, A. A., Engelen, G. B., 1985. Multivariate Analysis and Interpretation of the: Hydrochemistry of a. Dolomitic Reef Aquifer, Northern Italy.. Water Resources Research, Vol. 21, No.7, p. 1010-1024.
  • Steinhorst, R. K., Williams, R. E., 1985. Discrimination, of Groundwater Sources Using Cluster Analysis, MANOVA, Canonical Analysis and Discriminant Analysis., Water Resources Research, Vol. 21, No.. 8, p. 1149- 1156.
  • Şenel, M., 1984. Discussion .on the Antalya Nappes, in Geology of the Taurus Belt Proceedings. Ö. Tekeli and M.C. Göncüoğİu (Eds..), Proceedings of the International Symposium, on the Geology of the Taurus Belt, 1983,, MTA, Ankara, p. 41-52..
  • Truesdell, A.H., Jones, B.F., 1974., WATEQ, a Computer Program, for Calculating: Chemical Equilibria of Natural Waters,. U.S. Geol... Surv, I. Res., 2, p. 233-248,.
  • Usunoff, E. J., Guzman-Guzman, A., 1989. Multivariate Analysis in Hydrochemistry: An Example of the Use of Factor and Correspondence Analyses. Ground Water, Vol. 27, No. 1, p. 27-34.
  • Williams, K, R, 1982. Statistical Identification of Hydraulic Connections Between the Surface of a Mountain and Internal Mineralized. Sources. Ground Water, Vol. 20, No.. 4, p. 466-478