Agrega Üretim Sahalarındaki Belirsizlik ve Risklerin Azaltılmasında Jeoloji ve Mühendislik Jeolojisi Araştırmaların Önemi

Agrega ocaklarında üretilen malzemeler, beton ve çimento hammaddesi, asfalt ve dolgu agregası, demiryolu balast malzemesi vb. olarak birçok alanda kullanılmaktadır. Çoğunlukla şehir içlerinde veya şehirlere yakın bölgelerde yürütülen agrega üretim faaliyetleri, jeolojik, çevresel, sosyal, yasal ve ekonomik belirsizlikler nedeniyle riskli bir faaliyettir. Teknik ve bilimsel verilere dayalı, belirsizlik ve riskleri azaltılmış, şeffaf ve tutarlı verilerle geliştirilmiş projeler iç ve dış tüm paydaşların proje riskleri hakkında doğru bilgiye sahip olmalarını sağlayacaktır. Kayaçların kullanım alanlarına göre beklenen kaliteleri değişkenlik sunmaktadır. Birçok ocak yerinde, kayaçların bileşim ve dokuları, organik madde ve kavkı içeriği, yapısal unsurların kayaç kalitesine etkisi, farklı ayrışma türleri ve ürünleri, kayaçların kökeni ile ilgili zararlı bileşenler vb. unsurların çok kısa mesafelerde değiştiği bilinmektedir. Bu nedenle, ocaklarda işletme öncesi jeoloji ve mühendislik jeolojisi araştırmaları yapılmalıdır. Ocaklarda bulunan kayaçların bileşim ve kalite değişimleri ile jeolojik, hidrojeolojik, jeoteknik ve çevresel risklerinin belirlenmesi üretimin devamlılığında önemli rol oynayacaktır. Bu çalışmanın amacı; ocak alanlarında belirsizlik ve risklerin azaltılması için gerekli detaylı jeoloji ve mühendislik jeolojisi araştırmalarının önemini vurgulamaktır.

The Importance of Geology and Engineering Geolology Studies in Reducing Uncertainties and Risks in Aggregate Production Sites

Materials produced in rock quarries have many uses, such as concrete and cement raw material, asphalt and embankment aggregates and railway ballast. Aggregate production activities, which are mostly carried out in urban areas, are a risky activity due to geological, environmental, social, legal and economic uncertainties. Projects based on technical and scientific data have reduced uncertainty and risks; furthermore, projects developed with transparent and consistent data, will ensure that all internal and external stakeholders have accurate information about project risks. The quality expectations of rocks change according to their planned use. Many quarries exhibit parametric differences within very short distances. For example rock composition and texture, organic material and shell content, structural characteristics, weathering types and their products, and the presence of dangerous substances can all vary. For this reason, pre-operation geology and engineering geology studies should be carried out in the quarries. Determining the composition and quality changes of the rocks in the quarries and the geological, hydrogeological, geotechnical and environmental risks will play an important role in the quarry and facility planning. The aim of this study is to emphasize the importance of detailed geology and engineering geology surveys in reducing uncertainty and risks in quarry areas.

___

  • Briggs, C. A., & Bearman R. A., (1996). An investigation of rock breakage and damage in comminution equipment. Miner Eng., 9, 489– 497.
  • Evertsson, C. M., (2000). Cone crusher performance. PhD Thesis, Chalmers University of Technology, Goteborg.
  • Goodman, R. E., (1993). Engineering Geology, Rock in Engineering Construction, John Wiley and Sons Inc. (Publisher), 412 p.
  • Houston, E. C., & Smith, J. V., (1997). Assessment of rock quality variability due to smectitic alteration in basalt using X-ray diffraction analysis. Eng Geol., 46, 19–32.
  • Jern, M., (2001). Determination of the damaged zone in quarries, related to aggregate production. Bull Eng. Geol. Environ., 60, 157–166.
  • Johnson, R.B., & DeGraff, V.J., (1988). Principles of Engineering Geology, John Wiley and Sons Inc. (Publisher), New York, 497 p.
  • Langer, W.H., (2001). Geological considerations affecting aggregate specifications. 9th Annual Symposium of the International Center for Aggregates Research, Austin, Texas, April 23- 25.
  • Lizotte, Y.C., & Scoble, M.J., (1994). Geological control over blast fragmentation. Can Mining Metallurgical Bull. 87(983), 57–71.
  • Lolcama, J. L., Cohen, H. A., & Tonkin, M. J., (2002). Deep karst conduits, flooding, and sinkholes: lessons for the aggregates industry. Engineering Geology, 65, 151–157.
  • McNally, G.H., (1998). Soil and Rock Construction Materials, E & FN Spon, London, 403 p.,
  • Persson, L., (2002). Rock materials for construction: Resources, Properties, Heterogeneity and suitability for use: Examples and Issues from the Precambrian of Sweden, Proceedings of 9th IAEG Congress, Durban, South Africa, 105-120.
  • Raisanen, M., (2005). Quality assessment of a geologically heterogeneous rock quarry in Pirkanmaa county, southern Finland, Bulletin of Engineering Geology and the Environment, 64, 409-418.
  • Ramsay, D. M., Dhir, R. K., & Spence, I. M., (1974). The role of rock and clast fabric in the physical performance of crushed-rock aggregate, Engineering Geology, 8, 267-285.
  • Smith, M. R., & Collis, L., (1993). Aggregates. Geological Society Engineering Geology Special Publication, Vol 9. 339 p.
  • Stubbs, B. J., & Smith, J. V., (1997). Weathered bedrock as a source of sand and gravel aggregate in north-eastern New South Wales, Australia. Environ Geol., 32(1), 64–70.
  • Tuğrul, A. ve Yılmaz, M., (2007). Taş Ocaklarında Kayaç Kalitesinin Değişimi ve Ocak Yerlerinde Mühendislik Jeolojisi Araştırmalarının Önemi, IV. Ulusal Kırmataş Sempozyumu Bildiriler Kitabı, İstanbul, Türkiye, ss.63-72.
  • Tuğrul, A., Yılmaz, M., Hasdemir, S., & Sönmez, İ., (2016). Sustainable management of aggregateresources in İstanbul, From: Eggers, M. J., Griffiths, J. S., Parry, S. & Culshaw, M. G. (eds) 2016. Developments in Engineering Geology. Geological Society, London. Geological Society Engineering Geology Special Publication, 27, 55–61.
  • Tuğrul, A., (2018). The State of Aggregates in the World Today, 61st Annual Meeting/XIII IAEG Congress, Engineering Geology for a Sustainable World, 15-23 September 2018, San Francisco, USA.
  • Tuğrul, A., (2021). Sürdürülebilir madencilik yolunda sorumlu kaynak kullanımı ve sorumlu madencilikte UMREK koduna uygun raporlamanın önemi, Mimar ve Mühendis, sayı: 120, sayfa: 32-37.
  • Van Loon, A. J., (2002). The complexity of simple geology. Earth Sci Rev., 59, 287–295.
  • Yılmaz, M., & Tuğrul, A., (2013). The Importance of Lithologic Changes in an Aggregate Quarry, Global View of Engineering Geology and the Environment Proceedings, Faquan Wu & Shengwen Qi (eds), pp. 405-412.