VLBI Ölçümlerinden elde edilen VieVS ve Solve UT1 Sonuçlarının Karşılaştırılması

Farklı jeodezik VLBI analiz yazılım paketlerinin karşılaştırılması, bu paketlerin düzgün çalıştıklarından emin olunabilmesi için son derece önemlidir. Viyana VLBI Yazılımı VieVS ve Solve, Jeodezik VLBI topluluğu tarafından kullanılan iki farklı veri yazılım paketidir. Çalışmamızda VieVS ve Solve’dan çaşitli konfigürasyonlarla elde edilen 1 saatlik IVS yoğun ve 24 saatlik R1s ve R4s UT1 ölçüleri incelenmektedir. İki yazılım paketinin ayarları mümkün olduğunca kapsamlı yazılım değişiklikleri yapılmadan senkronize edilmiştir. Bu konfigürasyonda, yoğun IVS UT1 ölçülerinin ağırlıklı ortalama farkı 7.1 μs’lik ağırlıklı karesel ortalama WRMS yayılımı ile 7.8 μs’dir. 24 saatlik ölçülerin ağırlıklı ortalama farkı 5.5 μs’lik ağırlıklı karesel ortalama WRMS yayılımı ile -1.7 μs’dir. Ayrıca çözüm konfigürasyonlarının diğer yönlerinin değişmesinin etkileri incelenmiştir. Sonuçları önemli ölçüde kötüleştiren sıkı saat kısıtlamalarının eklenmesi dışında genellikle sonuçların farkları küçüktür.
Anahtar Kelimeler:

VLBI, IVS, UT1, Yer dönüklüğü

Comparison of VieVS and Solve UT1 results from VLBI measurements

Comparison of different geodetic VLBI analysis software packages is highly important to ensure that they work properly. Two of the data software packages used by the geodetic VLBI community are Solve and the Vienna VLBI Software VieVS packages. In our study we investigate UT1 estimates from VieVS and Solve for both 1-hour IVS Intensives and 24-hour R1s and R4s with various configurations. We synchronized the settings of the two software packages as much as possible without extensive software changes. In this configuration the weighted mean difference of the UT1 estimates from the IVS intensives was 7.8 μs with a WRMS scatter of 7.1 μs. The weighted mean difference for the 24-h sessions was -1.7 μs with a WRMS scatter of 5.5 μs. We also investigated the effect of changing other aspects of the solution configurations. In general the resulting differences were small except for imposing a tight clock constraint which significantly worsened the solutions.

___

  • Agnew D.C., (1997), NLOADF: A program for computing ocean- tide loading, J. of Geophys. Res, vol. 102, pp. 5109–5110, doi: 10.1029/96JB03458
  • Agnew D.C., (1996), SPOTL: Some programs for ocean-tide load- ing, SIO Ref. Ser., 96-9, Scripps Institute of Oceanography, La Jolla, 35p.
  • Bolotin S., (2000), SteelBreeze home page,http://steelbreeze.sourceforge.net. Accessed on 20 March 2015.
  • Böhm J., Böhm S., Nilsson T., Pany A., Plank L., Spicakova H., Teke K., Schuh H., (2009), The New Vienna VLBI Software VieVS, In: Proceedings IAG Scientific Assembly 2009, In: Inter- national Association of Geodesy Symposia Series Vol. 136, pp 1007-1011.
  • Böhm J. and Schuh H., (2007), Forecasting Data of the Tropo- sphere Used for IVS Intensive Sessions, In: Proceedings 18th European VLBI for Geodesy and Astrometry Working Meeting, 12-13 April 2007, Vienna, pp 153-157.
  • Böhm J., Werl B., Schuh H. (2006), Troposphere Mapping Func- tions for GPS and Very Long Baseline Interferometry from Euro- pean Centre for Medium-Range Weather Forecasts Operational Analysis Data, Journal of Geophysical Research, 111, B02406, doi: 10.1029/2005JB003629.
  • Böhm J., Niell A., Tregoning P., Schuh H., (2006), Global Mapping Function (GMF): A New Empirical Mapping Function Based on Numerical Weather Model Data, Geophysical Research Letters 33, L07304, doi: 10.1029/2005GL025546.
  • Dickman S.R., (1993), Dynamics ocean-tide effects on Earth's ro- tation, Geophysical Journal International, 11, pp 448-470, doi: 10.1111/j.1365-246X.1993.tb01180.x
  • Engelhardt G., Thorandt V., Ullrich D., (2011), VLBI Analysis at BKG, In: Proceedings 20th European VLBI for Geodesy and As- trometry Working Meeting, 29-31 March 2011, Bonn, pp 102- 104.
  • Gipson J., MacMillan D., Petrov L., (2008), Improved estimation in VLBI through better modeling and analysis, In: Proceedings5th International VLBI Service for geodesy and astrometry General Meeting 2008, pp 157-162.
  • Hobiger T., Otsubo T., Sekido M., Gotoh T., Kubooka T. and Taki- guchi H., (2010), Fully Automated VLBI Analysis with c5++ for ultra-rapid determination of UT1, Earth Planets Space, 62, pp 933-937, doi: 10.5047/eps.2010.11.008
  • Petit G. and Luzum B., (2010), IERS conventions 2010, (IERS Technical Note; 36) Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodësie, 2010. 179 pp., ISBN 3-89888- 989-6.
  • Kantha L.H., Steward J.S. and Desai S.D. (1998) Long-period lu- nar fortnightly and monthly ocean tides, Journal of Geophysical Research, 103, 12, 639, doi: 10.1029/98jc00888.
  • Ma C., Sauber J., Clark T., Gordon D., Himwich W.E., Ryan J.W., (1990), Measurement of horizontal motions in Alaska using very long baseline interferometry, Journal of Geophysical Research, 95, B13, 21991-22011, doi: 10.1029/JB095iB13p21991.
  • MacMillan D., Behrend D., Kurihara S., (2012), Effects of the 2011 Tohoku earthquake on VLBI geodetic measurements, In: Proceed- ings 7th International VLBI Service for geodesy and astrometry 2012 General Meeting, pp 440-444, NASA/CP-2012-217504.
  • Niell A.E., (1996), Global mapping functions for the atmosphere delay at radio wavelengths, Journal of Geophysical Research, 101, 32273246, doi: 10.1029/95JB03048.
  • Petrov L. and Baver K.D., (2008), Description of the keywords of BATCH control language, 7/31/2008.
  • Petrov L. and Boy J.-P., (2004), Study of the atmospheric pres- sure loading signal in very long baseline interferometry ob- servations, Journal of Geophysical Research, Vol. 109, B3. doi 10.1029/2003JB002500.
  • Petrov L. and C. Ma, (2003), Study of harmonic site position vari- ations determined by very long baseline interferometry, J. Geo- phys. Res., 108, 2190, doi: 10.1029/2002JB001801.
  • Plank L., Böhm J., Schuh H., (2010), Comparison campaign of VLBI data analysis Software - First Results, In: Proceedings 6th International VLBI Service for Geodesy and Astrometry 2010 General Meeting, pp 217-221, NASA/CP-2010-215864.
  • Plank L., (2010), Results from the VLBI data analysis software comparison campaign, Presented at The First VieVS User Work- shop, in Vienna, Austria, 2010.
  • Ray R.D., (1999), A global ocean tide model from TOPEX/POSEI- DON Altimetry: GOT99.2, NASA/TM-1999-209478, Greenbelt, 58 p., 1999.
  • Saastamoinen J., (1972), Atmospheric correction for troposphere and stratosphere in radio ranging of satellites, The Use of Ar- tificial Satellites for Geodesy, Geophysics Monograph Series, Vol. 15. Edited by Soren W. Henriksen, Armando Mancini, and Bernard H. Chovitz. Washington, DC: American Geophysical Union, 1972., p.247.
  • Saastamoinen J., (1973), Contributions to the theory of atmospher- ic refraction, Bulletin Godsique, Volume 47,Issue 1, pp.13-34, doi: 10.1007/bf02522083.
  • Schuh H. and Behrend D. (2012), VLBI: A fascinating technique for geodesy and astrometry, Journal of Geodynamics, Vol. 61, pp. 6880. doi: 10.1016/j.jog.2012.07.007.
  • Titov O., Tesmer V. and B ̈ohm J., (2004), OCCAM v. 6.0 Software for VLBI data analysis, Proceedings 3rd International VLBI Ser- vice for Geodesy and Astrometry 2004 General Meeting, pp 267- 271, NASA/CP-2004-212255.
  • USNO Toshi web site http://toshi.nofs.navy.mil/ ser7/readme. Ac- cessed on 20 March 2015.
  • Uunila M., Baver K., Gipson J., Nilsson T., (2012), Comparison of UT1 and polar motion from IVS sessions derived from VieVS and solve analysis, In: Proceedings 7th International VLBI Service for Geodesy and Astrometry General Meeting 2012, pp 400-404, NASA/CP-2012-217504.
  • Wahr J.M. and Bergen Z., (1986), The effects of mantle anelastic- ity on nutations, Earth tides, and tidal variations in rotation rate, Geophysical Journal of Royal Astronomical Society, 87(2), pp 633-668, doi:10.1111/j.1365-246X.1986.tb06642.x.
  • Yoder C.F., Williams J.G. and Parke M.E., (1981), Tidal variations of Earth rotation, Journal of Geophysical Research, 86(B2), pp 881-891, doi:10.1029/JB086iB02p00881.