Kentsel Alanların WorldView-2 uydu görüntülerinden makine öğrenme algoritmaları kullanılarak tematik haritalanması

Kentsel alanların uzaktan algılama görüntülerinden görüntü sınıflandırma teknikleri kullanılarak izlenmesi ve haritalanması şehir ve bölge plancıları ve belediyeler için önemlidir. Yüksek çözünürlüklü uydu görüntüleri arazi-kullanımı/arazi-örtüsü haritalarının elde edilmesinde önemli veri kaynaklarıdır. Bu makalede, makine öğrenme algoritmalarından rastgele orman ve destek vektör makineleri sınıflandırmaları kullanılarak WorldView-2 uydu görüntülerinden kentsel tematik haritalar elde edilmiştir. Bu sınıflandırmaların performansları seçilen farklı kentsel karakteristiklere sahip dört test alanında değerlendirilmiş ve karşılaştırılmıştır. Dört test alanı için elde edilen görsel ve nicel sonuçlar, makine öğrenme algoritmalarının kentsel tematik haritalamada verimliliğini göstermektedir. Rastgele orman sınıflandırması kullanıldığında sınıflandırma doğrulukları 89.92 ile 96.38 değerleri arasında ve kappa değerleri 0.8790 ile 0.9566 değerleri arasında hesaplanmıştır ki bu değerler oldukça yüksektir. Benzer şekilde, destek vektör makineleri sınıflandırması kullanıldığında sınıflandırma doğrulukları 91.98 ile 96.07 değerleri arasında ve kappa değerleri 0.9038 ile 0.9528 değerleri arasında hesaplanmıştır. Sonuçlar, ayrıca farklı test alanları için elde edilen farklı sınıflandırma doğruluklarının seçilen kentsel dokuların özellikleriyle ilişkili olduğunu göstermektedir

Thematic mapping of urban areas from WorldView-2 satellite imagery using machine learning algorithms

Thematic mapping of urban areas from WorldView-2 satellite imagery using machine learning algorithmsMonitoring and mapping urban areas from remote sensing imagery using image classification techniques are important for urban and regional planners and municipalities. High resolution satellite images are essential data sources for the generation of urban land-use/land-cover maps. In this paper, urban thematic maps are generated from WorldView-2 satellite images using machine learning algorithms, namely random forest and support vector machines classifiers. The performances of these classifiers are evaluated and compared using four test areas that have different urban characteristics. The obtained visual and quantitative results for four test areas indicate the effectiveness of the machine learning algorithms in urban thematic mapping. The overall accuracies were computed in the range of 89.92 and 96.38 and overall kappa values were computed in the range of 0.8790 and 0.9566 for random forest classifier, which are considerably high. Similarly, for support vector machines classifier, the overall accuracies were computed in the range of 91.98 and 96.07 and overall kappa values were computed in the range of 0.9038 and 0.9528. The results also show that different classification accuracies for different test areas are related to the properties of the selected urban patterns

___

  • Akar Ö., Güngör O., (2012), Classification of multispectral images using Random Forest Algorithm, Journal of Geodesy and Geoinformation, 1(2), 105-112, doi: 10.9733/jgg.241212.1.
  • Berger C., Voltersen M., Hese S., Walde I., Schmullius C., (2013). Robust extraction of urban land cover information from HSR multi-spectral and Lidar data, IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 6(5), 2196- 2211, doi: 10.1109/JSTARS.2013.2252329.
  • Breiman L. (2001), Random Forests, Machine Learning, 45, 5–32, doi: 10.1023/A:1010933404324
  • Breiman L., (1996), Bagging Predictors, Machine Learning, 24,123–140, doi: 10.1007/BF00058655.
  • Chen Z., Wang G., Liu J., (2012), A modified object- oriented classification algorithm and its application in high-resolution remote-sensing imagery, International Journal of Remote Sensing, 33(10), 3048-3062., doi: 10.1080/01431161.2011.625055.
  • Dalponte M., Orka H. O., Gobakken T., Gianelle D., Naesset E., (2013), Tree species classification in Boreal forests with hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing, 51(5), 2632-2645, doi: 10.1109/ TGRS.2012.2216272.
  • Foody G. M., (2004), Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy, Photogrammetric Engineering and Remote Sensing 70(5), 627–633, doi: 10.14358/PERS.70.5.627.
  • Gislason P. O., Benediktsson J. A., Sveinson J. R., (2006), Random forests for land cover classification, Pattern Recognition Letters, 27(4), 294–300, doi: 10.1016/j.patrec.2005.08.011.
  • Guan H., Li J., Chapman M., Deng F., Ji Z., Yang X., (2013), Integration of orthoimagery and Lidar data for object- based urban thematic mapping using random forests, International Journal of Remote Sensing, 34(14), 5166–5186, doi: 10.1080/01431161.2013.788261.
  • Huang C., Davis L. S., Townshend J. R. G., (2002), An assessment of support vector machines for land cover classification, International Journal of Remote Sensing, 23(4), 725–749, doi: 10.1080/01431160110040323.
  • Huang X., Zhang L., Li P., (2007), Classification and extraction of spatial features in urban areas using high-resolution multispectral imagery, IEEE Geoscience and Remote Sensing Letters, 4(2), 260-264, doi: 10.1109/LGRS.2006.890540.
  • Jakimow B., Oldenburg C., Rabe A., Waske B., van der Linden S., Hostert P., (2012), Manual for Application: ImageRF (1.1), Universtat Bonn and Humboldt Universitat zu Berlin, Almanya.
  • Kavzoglu T., Colkesen I., (2009), A kernel functions analysis for support vector machines for land cover classification, International Journal of Applied Earth Observation and Geoinformation, 11, 352-359, doi: 10.1016/j.jag.2009.06.002.
  • Koc-San D., (2013), Evaluation of different classification techniques for the detection of glass and plastic greenhouses from WorldView-2 satellite imagery, Journal of Applied Remote Sensing, 7(1), 073553-1-20, doi: 10.1117/1.JRS.7.073553.
  • Oumar Z., Mutanga O., (2013), Using World View-2 bands and indices to predict bronze bug (Thaumastocoris peregrinus) damage in plantation forests, International Journal of Remote Sensing, 34(6), 2236–2249, doi: 10.1080/01431161.2012.743694.
  • Pacifici F., Chini M., Emery W. J., (2009), A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification, Remote Sensing of Environment, 113(2009), 1276-1292, doi: 10.1016/j.rse.2009.02.014.
  • Pal M., (2005), Random Forest Classifier for Remote Sensing Classification, International Journal of Remote Sensing, 26(1), 217-222, doi: 10.1080/01431160412331269698.
  • Palsson F., Sveinsson J.R., Benediktsson J. A., Anaes H., (2012), Classification of pansharpened urban satellite images, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(1), 281–297, doi: 10.1109/ JSTARS.2011.2176467.
  • PCI Software Users Manual, (2013), PCI Geomatics Enterprises Inc., Richmond Hill, Ontario, Kanada.
  • Rabe A., Van der Linden S., Hostert P., (2010), ImageSVM, Version 2.1, http://www.hu-geomatics.de [Erişim 1 May 2013].
  • Ridd M. K., (1995), Exploring a VIS (vegetation-impervious- surface-soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities, International Journal of Remote Sensing, 16(12), 2165–2185, doi: 10.1080/01431169508954549.
  • Rodriguez-Galiano V. F., Chica-Rivas M., (2012), Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and Digital Terrain Models, International Journal of Digital Earth, doi: 10.1080/17538947.2012.748848.
  • Rodriguez-Galiano V. F., Ghimire B., Rogan J., Chica-Olmo M. Rigol-Sanchez J. P., (2012), An assessment of the effectiveness of a random forest classifier for land-cover classification, ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93-104, doi: 10.1016/j.isprsjprs.2011.11.002.
  • Sesnie S. E., Finegan B., Gessler P. E., Thessler S., Bendana Z. R., Smith A. M. S., (2010), The multispectral separability of Costa Rican rainforest types with support vector machines and Random Forest decision trees, International Journal of Remote Sensing, 31(11), 2885-2909, doi: 10.1080/01431160903140803.
  • Updike T., Comp C., (2010), Radiometric use of WorldView-2 imagery, Radiometric_Use_of_WorldView-2_Imagery.pdf [Erişim 1 May 2013].
  • digitalglobe.com/downloads/
  • Van der Linden S., Rabe A., Wirth F., Suess S., Okujeni A., Hostert P., (2010), ImageSVM Classification, Manual for Application: ImageSVM, Version 2.1, Humboldt-Universitat zu Berlin, Almanya.
  • Vapnik, V. N., (1995), The Nature of Statistical Learning Theory, Springer-Verlag, New York, doi: 10.1007/978-1-4757-2440-0
  • Wang L., (2005), Support Vector Machines: Theory and Applications, Springer-Verlag, Berlin, Heidelberg.
  • Waske, B., Benediktsson J. A., Arnason K., Sveinsson J. R., (2009), Mapping of hyperspectral Aviris data using machine-learning algorithms, Canadian Journal of Remote Sensing, 35(S1), S106-S116, doi: 10.5589/m09-018.
  • Waske B., Braun M., (2009), Classifier ensembles for land cover mapping using multitemporal SAR imagery, ISPRS Journal of Photogrammetry and Remote Sensing, 64, 450-457, doi: 10.1016/j.isprsjprs.2009.01.003.
  • Waske B., van der Linden S., Oldenburg C., Jakimow, B., Rabe A., Hostert P., (2012), ImageRF – A user-oriented implementation for remote sensing image analysis with Random Forests, Environmental Modelling and Software, 35, 192-193, doi: 10.1016/j.envsoft.2012.01.014.
  • Watanachaturaporn P., Arora M. K., Varshney P. K., (2008), Multisource classification using support vector machines: an empirical comparison with decision tree and neural network classifiers, Photogrammetric Engineering and Remote Sensing, 74(2), 239-246, doi: 10.14358/PERS.74.2.239.
  • Welch R., (1982). Spatial resolution requirements for urban studies, International Journal of Remote Sensing, 3(2), 139–146, doi: 10.1080/01431168208948387.
  • Yonezawa C., (2007). Maximum likelihood classification combined with spectral angle mapper algorithm for high resolution satellite imagery, International Journal of Remote Sensing, 28(16), 3729–3737, doi: 10.1080/01431160701373713.