COVID-19 Sonrası Devam Eden Semptomlar, İnterstisyelAkciğer Hastalığı Oluşumu ve Takip Süreci

Aralık 2019’da Çin’in Wuhan eyaletinden severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)’ye bağlı ciddi akut solunum hastalıkları bildirildi. Koronavirüs hastalığı- 2019 (COVID-19) ilişkili semptomlar hafif üst solunum yolu infeksiyonundan akut solunum sıkıntısı sendromu (ARDS)’na kadar çeşitli klinik farklılık gösterir. Taburculuk sonrası bazı hastalarda semptomların ve radyolojik bulguların devam ettiği görülmüştür. Hipertansiyon ve diyabet gibi komorbiditeler, erkek cinsiyet ve ileri yaş gibi risk faktörleri ciddi COVID-19 ve idiopatik pulmoner fibrosis (İPF) için ortak risk faktörleridir. Bununla birlikte, SARS-CoV-2 infeksiyonuna yakalanan İPF hastalarında, antifibrotik tedavinin rolü ve bunların devamı veya kesilmesi için bilimsel mantık tam olarak tanımlanmamıştır. COVID-19 pandemisinden edinilen veriler ile şiddetli akut solunum sendromu (SARS) ve Ortadoğu solunum sendromu (MERS) gibi önceki koronavirüs infeksiyonlarından elde edilen veriler, SARS-CoV-2 infeksiyonunu takiben önemli fibrotik değişiklikler olabileceğini düşündürmektedir. Bu makalede, COVID-19 pnömonisi sonrası devam eden semptomların sıklığı ve ortaya çıkabilecek interstisyel akciğer hastalığı sıklığından söz edildi. Ayrıca başta pulmoner fibrosis olmak üzere akciğerde meydana gelen interstisyel değişikliklerin önlenmesi ve solunum fonksiyonlarında azalma literatür ışığında tartışılmıştır.

Ongoing Symptoms, Formation of Interstitial Lung Disease and Follow-up Process in PostCOVID-19

n December 2019, severe acute respiratory diseases due to severe acute respiratorysyndrome coronavirus-2 (SARS-CoV-2) were reported from Wuhan province of China. Thesymptoms associated with Coronavirus Disease-2019 (COVID-19) range from mild upperrespiratory tract infection to acute respiratory distress syndrome (ARDS). It was observed thatsymptoms and radiological findings continued in some patients after discharge. Comorbiditiessuch as hypertension and diabetes, risk factors such as male gender and advanced age arecommon risk factors for severe COVID-19 and idiopathic pulmonary fibrosis (IPF). However,the role of anti fibrotictherapy and the scientific rationale for their continuation ordiscontinuation in IPF patients infected with SARS-CoV-2 have not been fully defined. Datafrom the COVID-19 pandemic and previous coronavirus infections such as severe acuterespiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) suggest that theremay be significant fibrotic changes following SARS-CoV-2 infection. In this article, thefrequency of on going symptoms after COVID-19 pneumonia and the frequency of interstitiallung disease that may ocur were discussed. Inaddition, the prevention of interstitial changesin the lung, especially pulmonary fibrosis, and the decrease in respiratory functions arediscussed in the light of the literature.

___

  • 1. Sağlık Bakanlığı, Halk Sağlığı Genel Müdürlüğü. Genel Bilgiler, Epidemiyoloji ve Tanı, 7 Aralık 2020, Ankara.
  • 2. Carfì A, Bernabei R, Landi F. For the Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. Jama. 2020;324(6):603-5. https://doi.org/10.1001/jama.2020.12603
  • 3. Walid H, et al. Pathophysiology and pharmacological management of pulmonary and cardiovascular features of COVID-19. Journal of Molecular and Cellular Cardiology 2021;153:72-85. https://doi.org/10.1016/j.yjmcc.2020.12.009
  • 4. Gentile F, et al. Covid -19 and risk of pulmonary fibrosis: The importance of planning ahead. European Journal of preventive Cardiology 2020;27(13):1442-6. https://doi.org/10.1177/2047487320932695
  • 5. Ong KC, et al. 1-year pulmonary function and health status in survivors of severe acute respiratory syndrome. Chest 2005;128(3):1393-400. https://doi.org/10.1378/chest.128.3.1393
  • 6. Xie L, et al. Follow-up study on pulmonary function and lung radiographic changes in rehabilitating severe acute respiratory syndrome patients after discharge. Chest 2005;127(6):2119-24. https://doi.org/10.1378/chest.127.6.2119
  • 7. COVID-19 rapid guideline: managing the long-term effects of COVID-19 NICE guideline Published: 18 December 2020.
  • 8. Banda JM, Singh GV, Alser O, et al. Long-term patientreported symptoms of COVID-19: an analysis of social media data. MedRxiv. 2020 https://doi.org/10.1101/2020.07.29.20164418
  • 9. Carfì A, Bernabei R, Landi F, For the Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. Jama. 2020;324(6):603-5. https://doi.org/10.1001/jama.2020.12603
  • 10. Nehme M, et al. COVID-19 Symptoms: Longitudinal Evolution and Persistence in Outpatient Settings. Ann Intern Med. 2020; Dec 8; M20-5926.
  • 11. Sandra L, et al. More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. MedRxiv 2021 Jan 30;2021.01.27.21250617.
  • 12. Barman MP, Rahman T, Bora K, Borgohain C. COVID-19 pandemic and its recovery time of patients in India: A pilot study. Diabetes Metab Syndr 2020; 14:1205. https://doi.org/10.1016/j.dsx.2020.07.004
  • 13. McCue C, et al. Long term outcomes of critically ill COVID-19 pneumonia patients: early learning. Intensive Care Med. 2021;47:240. https://doi.org/10.1007/s00134-020-06313-x
  • 14. Liam T, et al. Persistent Poor Health Post-COVID-19 Is Not Associated with Respiratory Complications or Initial Disease Severity. Ann Am Thorac Soc. 2021 Jan 8.
  • 15. Sait Yesillik. Postinfectious Cough. Turkiye Klinikleri J Fam Med-Special Topics. 2012;3(4):9-12.
  • 16. Trisha G, Matthew K, Christine AC, Maria B, Laiba H. Management of post-acute covid-19 in primary care. the bmj | Bmj 2020;370:m3026. https://doi.org/10.1136/bmj.m3026
  • 17. World Health Organization. Regional Office for Europe. (2020). Support for Rehabilitation Self-Management after COVID-19- Related Illness. World Health Organization. Regional Office for Europe. https://apps.who.int/iris/ handle/10665/333287. License: CC BY-NC-SA 3.0 IGO.
  • 18. Liam T, et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One. 2020;15(11):e0240784. https://doi.org/10.1371/journal.pone.0240784
  • 19. King’s College London. New research identifies those most at risk from ‘long COVID. 21 October 2020. 06.12.2020 https://www. kcl.ac.uk/news/studyidentifies-those-most-risk-long-COVID.
  • 20. Mark W. T, et al. Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems NetworkUnited States. Weekly / July 31, 2020;69(30);993-8.
  • 21. Melanie D. et al. Autonomic dysfunction in ‘long COVID’: rationale, physiology and management strategies. Clin Med (Lond) 2021;21(1):e63-e67. https://doi.org/10.7861/clinmed.2020-0896
  • 22. Swapna M, et al. ARC Study Group. ‘Long-COVID’: a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax 2020 Nov 10; thoraxjnl-2020- 215818.
  • 23. Ayham D, et al. Follow up of patients with severe coronavirus disease 2019 (COVID-19): Pulmonary and extrapulmonary disease sequelae. Respir Med. Nov-Dec 2020;174:106197. https://doi.org/10.1016/j.rmed.2020.106197
  • 24. Sabina A.G, et al. Pulmonary function and radiological features four months after COVID-19: first results from the national prospective observational Swiss COVID-19 lung study. Uropean Respiratory Journal Jan 2021, 2003690. https://doi.org/10.1183/13993003.03690-2020
  • 25. Mo X, Jian W, Su Z, et al. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur Respir J. 2020;55. https://doi.org/10.1183/13993003.01217-2020
  • 26. Torres-Castroa R, et al. Respiratory function in patient’s post-infection by COVID-19: a systematic review and meta-analysis. Pulmonology 2020 Nov 25; S2531- 0437(20)30245-2.
  • 27. British Thoracic Society. British Thoracic Society Guidance on Respiratory Follow Up of Patients with a Clinico Radiological Diagnosis of COVID-19 Pneumonia [Internet]. 2020.
  • 28. Sonnweber T, et al. Cardiopulmonary recovery after COVID-19 - an observational prospective multi-center trial. Eur Respir J 2020; in press.
  • 29. Shaw B, Daskareh M, Gholamrezanezhad A. The lingering manifestations of COVID-19 during and after convalescence: update on long-term pulmonary consequences of coronavirus disease 2019 (COVID-19). Radiol Med. 2020 Oct 1;1-7. https://doi.org/10.1007/s11547-020-01295-8
  • 30. Faria IM, Zanetti G, Barreto MM et al. Organizing pneumonia: chest HRCT findings. J Bras Pneumol 2015;41(3):231-7. https://doi.org/10.1590/S1806-37132015000004544
  • 31. Lim WS, et al. Bts guidelines for the management of community acquired pneumonia in adults: update 2009. Thorax. 2009;64 Suppl 3: iii1-55. https://doi.org/10.1136/thx.2009.121434
  • 32. Metlay JP, et al. Diagnosis and treatment of adults with community acquired pneumonia. An official clinical practice guideline of the American thoracic Society and infectious diseases Society of America. Am J Respir Crit Care Med. 2019;200: e45-67. https://doi.org/10.1164/rccm.201908-1581ST
  • 33. Shi H, Han X, Jiang N. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020 https://doi.org/10.1016/S1473-3099(20)30086-4
  • 35. Lindsay T. McDonald. Healing after COVID-19: are survivors at risk for pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2021;320:L257-L265. https://doi.org/10.1152/ajplung.00238.2020
  • 36. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
  • 37. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med, Lancet Respir Med. 2020;8:420-2. https://doi.org/10.1016/S2213-2600(20)30076-X
  • 38. Tian S, Hu W, Niu L, et al. Pulmonary pathology of early phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol. 2020 https://doi.org/10.1016/j.jtho.2020.02.010.
  • 39. Zhang H, Zhou P, Wei Y, et al. Histopathologic changes and SARS-CoV-2 immunostaining in the Lung of a Patient With COVID-19. Ann Intern Med. 2020. https://doi.org/10.7326/M20-0533
  • 40. Yao XH, Li TY, He ZC, et al. A pathological report of three COVID-19 cases by minimally invasive autopsies. Zhonghua Bing Li Xue Za Zhi. 2020;49:E009. doi: 10.3760/cma.j.cn112151-20200312- 00193.
  • 41. Von der Thüsen JH, Vandermeulen E, Vos R, et al. The histomorphological spectrum of restrictive chronic lung allograft dysfunction and implications for prognosis. Modern Pathology. 2018;31:780-90. https://doi.org/10.1038/modpathol.2017.180
  • 42. Ding Y, Wang H, Shen H, et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol. 2003;200:282-9. https://doi.org/10.1002/path.1440
  • 43. Ng DL, Al Hosani F, Keating MK, et al. Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014. Am J Pathol. 2016;186:652-8. https://doi.org/10.1016/j.ajpath.2015.10.024
  • 44. Liu J et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol. 2020;92:491-4. https://doi.org/10.1002/jmv.25709
  • 45. Sheng G, Chen P, Wei Y, Yue H, Chu J, Zhao J, Wang Y, Zhang W, Zhang HL. Viral Infection Increases the Risk of Idiopathic Pulmonary Fibrosis: A Meta-Analysis. Chest 2020;157:1175-87. https://doi.org/10.1016/j.chest.2019.10.032
  • 46. Xie, L, et al. Dynamic changes of serum SARS-coronavirus IgG, pulmonary function and radiography in patients recovering from SARS after hospital discharge. Respir. Res. 2005 https://doi.org/10.1186/1465-9921-6-5
  • 47. Ademola S O, Simon A B, Oyeronke T W, Olusegun S O. Pulmonary Fibrosis in COVID-19 Survivors: Predictive Factors and Risk Reduction Strategies. Pulm Med. 2020 Aug 10; 2020:6175964. PMID: 32850151; PMCID: PMC7439160 https://doi.org/10.1155/2020/6175964
  • 48. Lechowicz K, Drozdzal S, Machaj F, Rosik J, Szostak B, Zegan-Bara M, et al. COVID-19: The potential treatment of pulmonary fibrosis associated with SARS-CoV-2 infection. J Clin Med 2020;9:1917. https://doi.org/10.3390/jcm9061917
  • 49. Gentile F, Aimo A, Forfori F, Catapano G, Clemente A, Cademartiri F, et al. COVID-19 and risk of pulmonary fibrosis: the importance of planning ahead. Eur J Preven Cardiol. 2020;27(13):1442-6. https://doi.org/10.1177/2047487320932695
  • 50. Kayaalp SO. Glukokortikoidler. Tıbbi farmakoloji. 2000;2:1301-16.
  • 51. Wiertz IA, Wuyts, WA. Van Moorsel CHM, et al. Unfavourable outcome of glucocorticoid treatment in suspected idiopathic pulmonary fibrosis. Respirology 2017. Dec 5. https://doi.org/10.1111/resp.13230
  • 52. Katherine Jane M, et al. Persistent Post-COVID-19 Inflammatory Interstitial Lung Disease: An Observational Study of Corticosteroid Treatment. Ann Am Thorac Soc. 2021 Jan 12. Epub ahead of print.
  • 53. Chaolin H, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 2021; 397: 220-32. https://doi.org/10.1016/S0140-6736(20)32656-8
  • 54. Crisan Dabija R, Antohe I, Trofor A, Antoniu SA. Corticosteroids in SARS-COV2 infection: certainties and uncertainties in clinical practice. ExpertRev Anti InfectTher. 2021 Jun 1:1-10. https://doi.org/10.1080/14787210.2021.1933437
  • 55. Miguel AP, Santiago O, Hector H, Juan FB , Doris CA , Henry Laniado, et al. Dexamethasone vs methylprednisolone high dose for Covid-19 pneumonia. PLoSOne 2021 May 25;16(5):e0252057. eCollection 2021;220-32. https://doi.org/10.1371/journal.pone.0252057
  • 56. Buckley LF, Wohlford GF, Ting C, Alahmed A, Van Tassell BW, Abbate A, et al. Role for anti-cytokinetherapies in severe coronavirus disease 2019. Crit Care Expl 2020;2:e0178. https://doi.org/10.1097/CCE.0000000000000178
  • 57. Barut F, Ozacmak VH, Turan I, Sayan-Ozacmak H, Aktunc E. Reduction of acute lung ınjury by administration of spironolactone after intestinal ıschemia and reperfusion in rats. Clin Investig Med Med. 2016;39:e15-e24. https://doi.org/10.25011/cim.v39i1.26326
  • 58. Yavas G, Yavas C, Celik E, Sen E, Ata O, Afsar RE. Theimpact of spironolactone on the lung injury induced by concomitant trastuzumab andt horacic radiotherapy. Int J RadiatRes 2019;17(1):87-95.
  • 59. George PM, Wells A, Jenkins R. Pulmonary fibrosis and Covid 19: the potential role for antifibrotic therapy. Lancet Respir Med. 2020 Aug;8(8):807-815. https://doi.org/10.1016/S2213-2600(20)30225-3
  • 60. Onco Arendi Therapeutics (OAT). Drug Candidate OATD01 May Find Use in Treatment of Pulmonary Fibrosis in Patients Who Have Survived a New Coronavirus Infection (COVID-19); Onco Arendi Therapeutics (OAT): Warsaw, Poland, 2020.
  • 61. Dymek B, Sklepkiewicz P, Mlacki M, Zagozdzon A, Koralewski R, Mazur M, et al. CHIT1 is a novel therapeutic target in idiopathic pulmonary fibrosis (IPF): Anti-fibrotic e_cacy of OATD-01, a potent and selective chitinase inhibitor in the mouse model of pulmonary fibrosis. Eur. Respir. J. 2018;52:OA5361. https://doi.org/10.1183/13993003.congress-2018. OA5361
  • 62. Liu T, Liu X, Li W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget 2016;7:40800-40815. https://doi.org/10.18632/oncotarget.8315
  • 63. Bhagya N, Chandrashekar KR. Tetrandrine-A molecule of wide bioactivity. Phytochemistry 2016;125:5-13. https://doi.org/10.1016/j.phytochem.2016.02.005
  • 64. Liu C, Hu Y, Xu L, Liu C, Liu P. Efect of Fuzheng Huayu formula and its actions against liver fibrosis. Chin. Med. 2009;4:12. https://doi.org/10.1186/1749-8546-4-12
  • 65. Song, YZhao, J Wang S, Huang H, Hong J, Zuo J, Huo S. The efcacy of Chinese patent medicine combined with entecavir for the treatment of chronic HBV-related liver fibrosis or cirrhosis: Protocol for a systematic review and meta-analysis of randomized controlled trials or prospective cohort studies. Medicine (Baltimore) 2019;98:e15732. https://doi.org/10.1097/MD.0000000000015732