Zamanla hızlı değişen gerilimlerde boşalma olaylarının incelenmesi
Nanosaniyelik darbeler, EMP (ElektroManyetik Darbe) yoluyla oluşabilir. EMP uzayda doğal yolla meydana gelebileceği gibi yapay yolla da oluşturulabilir. Yüksek irtifada meydana gelen bir EMP, çok geniş alanları etkisi altında bırakabilir. EMP’nin en önemli bozucu etkisi, elektronik sistemlerin ve cihazların iletkenlerine girişimde bulunarak bunların içine ulaşması ve sistem veya aygıtların bozulmasına ya da yanlış çalışmasına neden olmasıdır. EMP benzeri darbe gerilimleri genel olarak nanosaniye süreli darbelerdir. Cihazların böyle darbeler karşısındaki davranışlarını incelemek için yapay EMP üreteçleri kullanılır. Bu üreteçler EMP’nin oluşturduğu elektrik ve manyetik alanları üretirler. Bu çalışma kapsamında EMP benzeri nanosaniyelik darbelerin aygıtların iletkenlerine ve elektronik kartlarına ulaşmaları durumunda meydana gelebilecek olaylar değerlendirilmiştir. Bu amaçla, yaklaşık 50 nanosaniyede tepe değerine ulaşan ve toplamda yaklaşık 1000 nanosaniye süren 10 kV’a kadar darbe gerilimi üreten bir üreteç tasarlanmış ve gerçeklenmiştir. Üreteç tek katlı Marx devresi ilkesi ile çalışmaktadır. Elektronik aygıtların devre kartlarını benzetmek için elektro-nik devrelerde sıkça karşılaşılan yedi farklı geometride akım yolu FR-4 malzemeden yapılmış devre kartına hazırlanmıştır. Darbe gerilimi üretecinden elde edilen gerilimlerle akım yolları arasındaki boşalma olayları incelenmiştir. Numune akım yollarında geometriye bağlı olarak boşalma noktaları belirlenmiş, uygulanan gerilimler ile elektrotların yüzde elli atlama eğrileri çıkarılmıştır. Yapılan deneysel çalışma, teorik hesaplamalar ile desteklenmiştir. Bunun için sonlu elemanlar yöntemi ile bilgisayar analizi yapılmıştır. Bu çalışma ile nanosaniyelik darbe gerilimine maruz kalan elektronik kartlarda geometriye bağlı olarak etkilenme üzerine yorum yapılmıştır.
Investigation of the flashover process under fast transient voltages
Improvements in technology had widened the use of electricity. The process beginning with direct current continued with alternative current. Wide usage had brought different requirements with. The natural effect of lightning and the disturbance effect of switching in electrical installation necessitated research on this subject. It’s necessary to have an idea on the behavior of electrical systems facing such an effect, before they are put into operation. This necessity had triggered generation of pulse voltages in laboratories. Pulse voltages generated gave the chance of performing tests on systems and components forming systems. In the course of time, pulse voltages have been generated not only for experimental objective, and also directly for industrial, medical, military etc. objectives. The microsecond and millisecond pulses reduced to nanosecond even picosecond pulses with the development intechnology.Nanosecond pulses may be formed by EMP (ElectroMagnetic Pulse). EMP can be originated naturally in space; beside it can be formed artificially. A high altitude EMP can effect a wide area on earth. The most important disturbance effect of EMP is coupling to the conductors of electronic systems and equipments, entering the device and causing a breakdown or malfunction. EMP like pulses are usually nanosecond pulses. To examine the behavior of devices facing such a pulse, artificial EMP simulators are used. These simulators generate the electric and magnetic fields simulating EMP.In this study, the possible events that may take place when the EMP like nanosecond pulses reaches to the conductors and circuits of electronic devices are evaluated. In this study it is intended to perform conducted EMP tests directly on to the conductors. For this aim, a pulse generator with an output up to 10 kV peak value, generating a pulse with a risetime of about 50 ns and total duration of about 1000 ns is designed and constructed. The realized generator operates according to principle of a single stage Marx circuit. Accurate and reliable measurement of the fast voltage pulse is an important point to be considered. Different ways of measurement of the high voltage pulse is experimented. An oscilloscope with capability of sampling 4 GSa/s is used to scope the pulse generated. The high speed and the other technical benefits of the oscilloscope brought many advantages with.For simulating the circuit of electronic device, widely used seven different geometrical current ways are prepared on to the board made of Fr4. Fr4 is a fire rated electrical-grade, dielectric fiberglass laminate epoxy resin system combined with a glass fabric substrate. Series of pulses of different voltage level is applied by the generator on the sample board, and the flashovers between current ways are observed. Number of flashover occurred over the applied pulses is noted as a table. Data on this table versus the voltage applied is used to draw graphics, which can be evaluated as the fifty percent discharge curves of the electrodes. Another work performed on the sample board is the determination of the flashover points for different geometries. Arc points of the electrodes were observed visually during the tests; besides, the electrodes were investigated by an electron microscope.The experimental work performed is tried to be supported with theoretical analysis. For this aim, electrical field intensity and field distribution of the electrodes under the voltage applied is numerically analyzed. Analysis is performed on computer using FEMM program based on finite elements method. The expected point of flashover is the point where the maximum electrical field observed. Both the experimental study and the computer analysis gave the similar results. Current way electrodes set straight parallel has lower fifty percent discharge level when compared with parallel electrodes having angles or arcs. Among the seven different geometries, electrodes having 135° mutually has the minimum fifty percent discharge voltage level. On parallel electrodes, flashover takes place on the edges however electrodes with arcs or angular in shape flashes at these angle points.The electromagnetic interference radiated from the test setup is determined. For this aim, the emission of the system is measured by biconical antennas during the test for all seven geometrical current ways. One step further, the current induced by the emission coupled to a power cord 1 m away from the setup is measured and evaluated.
___
- Akiyama, H., (1995). Pulsed power in Japan, Tenth IEEE International Pulsed Power Conference, July 3-6, 1995, Albuquerque, New Mexico, 1, 13-16.
- Akses, A., (2001). Darbe gerilimleri, yıldırım ve EMP üreteçleri, Yüksek lisans tezi, İTÜ Fen Bi-limleri Enstitüsü, İstanbul.
- Akses, A., Kalenderli, Ö., Yürekli, A. İ., Kumbasar, A. H., (2002). Design and construction of a 12 kV, impulse generator, EMC Europe 2002 International Symposium on Electromagnetic Compatibility, September 9-13, 2002, Sorrento, Italy, 257-260.
- Basov, G. F., Bastrikov, A. N., Koval'chuk, B. M., Kremnev, V. V., Kumpjak, E. V., (1995). High power megavolt pulsed generator with nanosecond rise time, Tenth IEEE International Pulsed Power Conference, July 3-6, 1995 Albuquerque, New Mexico, 2, 1426-1431.
- Efanov, V., Korenev, S., (2004). Nanosecond Marx pulsed generator with semiconductor switches, Twenty-Sixth International Power Modulator Symposium, May 23-26, 2004, San Francisco California, 520-525.
- Gilman, C., Lam, S. K., Naff, J. T., Klatt, M., Nielsen, K., (1999). Design and performance of the FEMP-2000: a fast rise time, 2 MV EMP pulser, Twelfth IEEE International Pulsed Power Conference, June 27-30, 1999, Monterey, California, 2, 1437-1440.
- Grekhov, I. V., Korotkov, S. V., Stepaniants, A. L., Khristyuk, D. V., Voronkov, V. B., Aristov, Y. V., (2005). High-power semiconductor-based nano and subnanosecond pulse generator with a low delay time, IEEE Transactions on Plasma Science, 33, 4, 1240-1244.
- Gundersenk, M., Kuthi, A., Behrend, M., Vernier, T., (2004). Bipolar nanosecond pulse generation using transmission lines for cell electro-manipulation, Twenty-Sixth International Power Modulator Symposium, May 23-26, 2004, San Francisco, California, 224-227.
- Martin, J. C., (1992). Nanosecond pulse techniques, Proceedings of the IEEE, 80, 6, 934-945.
- Rim, G. H., Pavlov, E. P., Kim, J. S., (2001). Nanosecond pulse generation with nonlinear capacitors and magnetic power compression, Thirteenth International Pulsed Power Conference, June 18-22, 2001, Las Vegas, Nevada, 2, 1287-1289.
- Smith, P. W., (2002). Transient Electronics Pulsed Circuit Technology, John Wiley & Sons, London.
- Verma, R., Shyam, A., Chaturvedi, S., Kumar, R., Lathi, D., Sarkar, P., Chaudhary, V., Shukla, R., Debnath, K., Sonara, J., Shah, K., Adhikary, B., Patel, R., Jigna, T., Jignesh, V., (2004a). A fast and portable mega-volt source for pulsed power applications, The 31st IEEE International Conference on Plasma Science, 28 June-1 July 2004, Baltimore, Maryland, 444-450.
- Verma, R., Shyam, A., Chaturvedi, S., Kumar, R., Lathi, D., Sarkar, P., Chaudhary, V., Shukla, R., Debnath, K., Sharma, S., Sonara, J., Shah, K., Adhikary, B., Jigna, T., Piyush, J., (2004b). A transmission line based compact repetitive and portable cascaded Blumlein pulser, Twenty-Sixth International Power Modulator Symposium, May 23-26, 2004, San Francisco California, 526-529.