Su içerisinde yaşayan bitkilerin spektral özelliklerinin incelenmesi

Son yıllarda Türkiye’de ve Dünya’da sulak alanların önemi birçok kamu kurum ve kuruluşu tarafından daha iyi anlaşılmış ve korunması öncelikli alanlar arasına dâhil edilmiştir. Bu alanlarda yaşayan bitkiler su kalitesi üzerindeki olumlu etkileri, birçok kuş türü için beslenme ve barınma alanları olmaları ve diğer birçok yönden ekonomik değere sahip olmaları nedeniyle birçok bilim adamı tarafından çeşitli yönleriyle incelenme alanları olarak görülmüşlerdir. Son 30 yıldır bu tür çalışmalarda kullanılan uzaktan algılama teknikleri manuel metotların sahip olduğu dezavantajları ortadan kaldırması nedeniyle sulak alan çalışmalarında da yoğun bir şekilde tercih edilmişlerdir. Özellikle orta çözünürlükteki uydu verileri daha ucuz olmaları, yoğun işgücüne olan ihtiyacı ortadan kaldırmaları, geniş alanlarda bütün ekosistemi içerisine alacak şekilde tekrarlanabilen verileri üretmeleri nedeniyle birçok araştırıcı tarafından kullanılmıştır. Bu araştırmada suda yaşayan bitki-lerin spektral özelliklerini tespit etmek amacıyla üzerinde bataklık bitkileri yerleştirilmiş bir panel tank içerisinde çeşitli derinliklere indirilerek farklı zemin ve bulanıklık koşullarında ölçümlere tabi tutulmuştur. Reflektans değerlerini toplamak amacıyla Spectron Engineering SE–500 spektroradyometresi kullanılmıştır. Spektron 368.5–1113.7 nanometre(nm) arasında değişen 252 farklı dalga boyunda veri toplama kapasitesine sahiptir. Laboratuvar ortamında yapılan bu deney, doğal su ortamlarında yaşayan bitkilerin yakın mesafe uzaktan algılama yöntemleri ile incelenmesi sırasında temiz su ve koyu renkli zemin koşullarında daha doğru ve güvenilir sonuçlar verebileceğini ortaya koymuştur. Elektro manyetik spektrumun yakın kızılötesi bölgesinin özellikle 700–730 nm’lik bölümünün sucul bitkilerin özelliklerinin belirlenmesinde önemli dalga boyu aralığı olduğunu deney sonuçları açıkça göstermiştir.

An examination of spectral characteristics of aquatic vegetation

In recent decades wetlands have been recognized as important ecosystem areas that should to be protected in Turkey and through out the World. Aquatic plants are an important indication of lake and wetland health because they help protect water quality and provide habitat for fish and other wildlife animals (Vatla-Hulkkonen vd., 2004). Therefore these valuable areas should be protected and monitored. Monitoring aquatic vegetation helps to protect wetlands and provides useful information about nature of wetlands. Many researches have been done several studies concerning about determination of status of aquatic vegetation in various water bodies by using traditional methods which are time consuming, expensive and labor intensive. In contrast, remote sensing is an economic way to monitor wetland areas, because it can monitor large areas in a short time on a repetitive basis.Remote sensing is a reliable tool for the examination of vegetation, both terrestrial and aquatic. Data from remote sensors have been used to determine at least four pertinent issues with regard to vegetation such as presence and absence of vegetation, type, condition of vegetation and production. In this experiment, the lab exercise was aimed at the use of close range remote sensing to examine several reflectance properties of submerged aquatic vegetation in different depth. The water tank was used for the experiment has 150 gallons volume, black polyethylene, and around m. depth. The experiment was conducted in a room that has painted black to control illumination and eliminate unwanted reflectance. Light measurements were made with a spectron Engineering, SE-590 spectroradiometer. This spectron collects data in 256 discrete channels. To eliminate noise effect a smoothing technique was used to calculate results. A white panel was used as a solar calibration standard. The volume reflectivity was calculated by rationing upwelling target radiance and calibrated radiance. Black and white panels were used as surrogate bottom during scanning. This target lowered in a horizontal position. This procedures were repeated the experiment with sediment solution above black bottom.The spectral response of the aquatic vegetation was reported in terms of percentage reflectance in different bottom and depth conditions. Results represent the variation of reflectance values in different wavelengths. The spectral features signifying the presence of aquatic vegetation in the water column consists of low reflectivity in all depth conditions between 400 and 500 nm because of absorption of blue lights. It seems that blue chlorophyll absorption region is more obvious with black background than with white because of white reflectance at shorter wavelength. There is a maximum green reflectivity between 500 and 600 nm following by classic red absorption region around 670 nm in both white and black bottoms and in different depth conditions. Maximum reflectance in the green region of EMS is related to presence of chlorophyll in the plants. Red absorption feature seems more apparent in both white and black bottom conditions. The highest reflectance is located in the NIR region of the EMS with both white and black bottom at the surface. High reflectance in the NIR results primarily from the internal structure of the vegetation. According to figures in the NIR there is another peak around 850 nm due to back scattering. Between these two peaks a small water absorption feature is present. In general, as suspended sediment amounts increased reflectance increased at the visible and NIR region with black bottom. In the case of no vegetation white background has highest reflectance curve than black bottom and turbid water. The amount of reflectance with white bottom reaches around 23 percent. In contrast the volume reflectance with black bottom is too low which is less than 1 percent because water absorbs all lights. In the case of presence of sediment with black bottom, the volume of reflectance increases and is higher than clear water with black background.Our experiment led us to conclude that the ordered patterns of either increasing or decreasing volume of reflectance of aquatic vegetation with different depth and bottom conditions were both logical and consistent. The useful findings from this experiment consisted of the apparent importance of bottom color on vegetation signals. With depth total amount of reflectance decreased both over the white and black background. Presence of suspended sediment in-creases the volume reflectance over black bottom.

___

  • Han, L. ve D.C. Rundquist, (1994). The response of both surface reflectance and the underwater light field to various levels of suspended sediment: preliminary results, Photogrametric Engineering and Remote Sensing, 60, 1463-1471.
  • Han, L. ve D.C. Rundquist, (2003). The spectral responses of Certophylumm demersum at varying depths in an experimental tank, International Journal of Remote Sensing, 24, 4, 859-864.
  • Karabulut, M. ve N. Ceylan, (2005). The Spectral Reflectance Responses of Water with Different Levels of Suspended Sediment in The Presence of Algae, Turkish Journal of Engineering and Environmental Sciences, 29, 6, 351-360.
  • Penuelas, J., I. Filella, A.Gamon ve C. Fields, (1997). Assessing photosynthetic radiation-use, efficiency of emergent aquatic vegetation from spectral reflectance, Aquatic Botany, 58, 307-315.
  • Rundquist, C.D., J.F. Schalles ve J.S. Peake, (1995). The response of volume reflectance to manipulated algal concentration above bright and dark bottoms at various depths in an experimental pool, Geocarto international, 10, 5-14.
  • Rundquist, D.C., L. Han, J.F. Schalles ve F.S. Peake, (1996). Remote measurement of algal chlorophyll in surface waters: The case for the first derivative of reflectance near 690, Photogrametric Engineering and Remote Sensing, 62, 195-200.
  • Tolk, B.L., L. Han ve D. C. Rundquist, (2000). The impact of bottom brightness on spectral reflectance of suspended sediments, International Journal of Remote Sensing, 21, 11, 2259-2268.
  • Valta-Hulkkonen, K., A. Kannien ve P. Pellikka, (2004). Remote sensing and GIS for detecting changes in the aquatic vegetation of a rehabilitated lake, International Journal of Remote Sensing, 25, 24, 5745-5758.