Seramik kompozitlerde elastik ve sürtünmeli köprülenen çatlak problemi

Bu çalışmada, tek eksenli gerilme altında, merkezi bir çatlağı olan, çatlak eksenine dik lifler ile kuvvetlendirilmiş sonsuz kompozit levha gözönüne alınmıştır. Problemin formülasyonunda kullanmak üzere, çatlak boyunca lifteki gerilme ve çatlak açılması ilişkisini ifade eden köprülenme bağıntıları olan Hsuech (l988)'in kullandığı elastik köprülenme bağıntısı ve Marshall ve diğerleri (1985)'nin kullandığı sürtünmeli köprülenme bağıntısı seçilmiştir. Problemin formülasyonunda elde edilen tekil integral denklem, Chebyshev polinomları yardımı ile lineer olmayan bir cebirsel denklem sistemine indirgenmiştir. Gevrek lifler ile kuvvetlendirilmiş kompozitlere örnek malzeme olarak $S_iC/AI_2O_3$ seçilmiş ve lif hacim oranının değişimine göre çözümler elde edilmiştir.

Bridging in uniaxial reinforced ceramic composites

In this study, a unidirectional fibre reinforced infinite composite plate under uniaxial stress which has a central through crack is considered. The bridging relations which express the relation between the stress in the fibre and the crack opening displacement along the crack axis as elastic bridging relation used by Hsuech (1988) and frictional bridging relation used by Marshall et al. (1985) which are consistent with infinite brittle fibre-reinforced composite behaviour are chosen to be utilised in the formulation of the problem. The differential equation which contains Airy stress functions of a centrally cracked orlhotropic plate is solved through Fourier transform techniques and the stresses in plane are obtained in terms of the crack surface derivative. The singular integral equation system obtained for the formulation of the problem, is reduced to the solution of a non-linear system of algebraic equations by introducing Chebyshev polynomials which have closer roots near to crack tips. Stress intensity factor at crack tips, crack opening displacement and the point where the bridging type considered changes on the crack axis can be calculated. $S_iC/AI_2O_3$ is chosen as an example of brittle fibre-reinforced composite material and the effect of the variations of the fibre volume ratio is presented.

___

  • Becher, P. F. ve Wei, G. C., (1984). Toughening behavior in SiC-whisker-reinforced Alumina, Communications of the American, C, 267-269.
  • Becher, P. F., Hsueh, C. H., Angelini, P. ve Tiegs, T. N., (1988). Toughening behavior in whiskerreinforced ceramic matrix composites, J. Am. Ceram. Soc., 71, 1050-1061.
  • Brandt, A. M., (1995). Cement based composites, E & FN Span., London
  • Budiansky, B., Evans, A. G. ve Hutchinson, J. W., (1995). Fiber-matrix debonding effects on cracking in aligned fiber ceramic composites, Int. J. Solids Structures, 32, 3/4, 315-328.
  • Budiansky, B., Hutchinson, J. W. ve Evans, A. G., (1986). Matrix fracture in fiber-reinforced ceramics, J. Mech. Phys. Solids, 34, 2, 167-189.
  • Chawla, K. K., (1993). Ceramic matrix composites, Chapman&Hall.
  • Chiang, Y-C, (2001). On fiber debonding and matrix cracking in fiber-reinforced ceramics, Composites Science and Technology, 61, 1743-1756.
  • Danchaivijit, S. ve Shetty, D. S., (1993). Matrix cracking in ceramic-matrix composites, Journal of the American Ceramic Society, 76, 2497-2504.
  • Delale, F., (1985). Fracture analysis of notched composites, ASME Journal of Engineering Materials and Technology, 109, 22-35.
  • Evans, A. G. ve Mcmeeking, R. M., (1986). On the toughening of ceramics by strong reinforcements, Acta Metall., 34, 2435-2441.
  • Fu, S. Y., Yue, C-Y., Hu, X. ve Mai, Y-W., (2000). Analyses of the micromechanics of stress transfer in single- and multi-fiber pull-out tests, Comp. Sci. and Tech., 60, 569-579.
  • Grimes, R. E., Kelkar, G. P., Guazzone, L. ve White, K. W., (1990). Elevated-temperature R-curve behavior of a Polycrystalline Alumina, J. Am. Ceram. Soc., 73, 1399-1404.
  • Hsueh, C. H., (1988). Elastic load transfer from partially embedded axially loaded fibre to matrix, Journal of Materials Science Letters, 7, 497-500.
  • Hsueh, C. H., (1990). Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites, Materials and Engineering, A123, 1-11.
  • Hsueh, C. H. ve Becher, P. F., (1996). Some considerations of bridging stresses for fiberreinforced ceramics, Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Ternesse 37831.
  • Hsueh, C. H. ve Becher, P. F., (1998). Interfacial shear debonding problems in fiber-reinforced ceramic composites, Acta Mater., 46, 3237-3245.
  • Hutchinson, J. W. ve Jensen, H. M. , (1990). Models of fiber debonding and pullout in brittle composites with friction, Mechanics of Materials, 9, 139-163.
  • Jenkins, M. G., Kobayashi, A. S., White, K. W. ve Bradt, R. C., (1987). Crack initiation and arrest in a SiC whisker/Al2O3 matrix composite, J. Am. Ceram. Soc., 70, 393-395.
  • Krause, R. F., Fuller, E. R. ve Rhodes, J. F., (1990). Fracture resistance behavior of Silicon Carbide whisker-reinforced Alumina composites with different porosities, J. Am. Ceram. Soc., 73, 559-566.
  • Kumaria, S., Kumar, S. ve Singh, R. N., (1997). The first matrix cracking behavior of fiber-reinforced ceramic matrix composites, Acta mater., 45, 5177-5185.
  • Lin, Z. ve Li, V. C., (1997). Crack bridging in fiber reinforced cementitious composites with sliphardening interfaces, J. Mech. Phys. Solids., 45, 763-787.
  • Marshall, D. B., Cox, B. N. ve Evans, A. G., (1985). The mechanics of matrix cracking in brittlematrix fiber composites, Acta metall., 33, 2013-2021.
  • Marshall, D. B. ve Cox, B. N., (1987). Tensile fracture of brittle matrix composites: influence of fiber strength, Acta Metall., 35, 2607-2619.
  • Rödel, J., Fuller, Jr. E. R. ve Lawn, B. R., (1991). In-situ observations of toughening processes in Alumina reinforced with Silicon Carbide whiskers, J. Am. Ceram. Soc., 74, 3154-57.
  • Rühle, M., Dalgleish, B. J. ve Evans, A. G., (1987). On the toughening of ceramics by whiskers, Scripta Metallurgica, 21, 681-686
  • Singh, R. N., (1990). Influence of interfacial shear stress on first-matrix cracking stress in ceramicmatrix composites, J. Am. Ceram. Soc., 73, 2930-2937.
  • Sneddon, I. N. ve Lowengrub, M., (1969). Crack problems in the classical theory of elasticity, John Wiley & Sons Inc., New York.
  • Sun, Y. ve Singh, R. N., (1998). The generation of multiple matrix cracking and fiber-matrix interfacial debonding in a glass composite, Acta Mater., 46, 1657-1667.
  • Thouless, M. D. ve Evans, A. G., (1988). Effects of pull-out on the mechanical properties of ceramicmatrix composites, Acta Metall., 36, 517-522.
  • Wang, Y., Li, V. C. ve Backer, S., (1988). Modelling of fibre pull-out from a cement matrix, The International Journal of Cement Composites and Lightweight Concrete., 10, 3, 143-149.
  • Wu, J., Jones, F. R. ve James, P. F., (1997). Continuous fibre reinforced mullite matrix composites by sol-gel processing (part II properties and fracture behavior), Journal of Materials Science, 32, 3629-3635.
  • Xu, G., Bower, A. F. ve Ortiz, M., (1998). The influence of crack trapping on the toughness of fiber reinforced composites, J. Mech. Phys. Solids, 46, 1815-1833.