Mühendislik yapılarının izlenmesinde jeodezik yöntemlerin kombinasyonu

Bu çalışmanın amacı, İstanbul’un güneybatısında, Büyükçekmece Gölü üzerinde yer alan ve TEM (Transit Avrupa Otoyolu − Transit European Motorway) otobanının bir bölümünü oluşturan Karasu viyadüğünün deformasyonlarının GPS ve nivelman ölçmeleri ile araştırılmasıdır. Bu amaçla altı aylık periyotlarla iki yılda gerçekleştirilen ölçme kampanyalarından elde edilen veriler değerlendirilmiştir. Deformasyonların bir boyutlu (1B) (düşey) analizlerinde, öncelikli olarak GPS ve nivelman ölçülerinden türetilen yükseklik farkları ayrı ayrı değerlendirilmiştir. Yükseklik farklarının birlikte değerlendirildiği 1B deformasyon analizinin sonraki bölümünde, GPS ve nivelman yükseklik farklarının birleştirilmesinde Helmert’in HELMERT ve Rao’nun MINQUE Varyans Bileşen Tahmini (VBT) yaklaşımları kullanılmıştır. Üç adımda gerçekleştirilen 1B deformasyon analizi sonrasında, yalnızca GPS ölçüleri kullanılarak S-transformasyonu uygulanmış ve viyadüğün olası deformasyonları bir kez de üç boyutlu (3B) olarak irdelenmiştir. Makalede, bu araştırmada uygulanan her bir deformasyon analizi yaklaşımının teorik yapısı da özet olarak verilmektedir. Çalışmanın sonuçlarında: Transit Avrupa Otobanının önemli bir bağlantı noktasında yer alan ve 2160 metre uzunluğundaki viyadüğün deformasyonlarının değerlendirilmesinin ve ortaya konmasının yanı sıra, büyük mühendislik yapılarındaki deformasyonlarının araştırılmasında uygulanacak ölçme ve analiz yöntemleri konusunda gelecek çalışmalara katkı sağlanması da amaçlanmıştır.

Combination of geodetic techniques in monitoring of engineering structures

It has a considerable importance to have the movements of an engineering structure within certain limits for the safety of the community depending on it. To determine whether an engineering structure is safe to use or not, their movements are monitored and possible deformations are detected from the analysis of observations. An appropriate observation technique, which can be geodetic or non– geodetic (geotechnical–structural) according to classification in Chrzanowski and Chrzanowski (1995), is chosen with considering the physical conditions of the observed structure (its shape, size, location and so on), environmental conditions (the geologic properties of the based ground, tectonic activities of the region, common atmospheric phenomena around the structure and so on), the type of monitoring (continuous or static) and the required measuring accuracy for being able to recognize the significant movements. Until the beginning of the 1980’s, conventional measurement techniques have been used for detecting the deformations in large engineering structures. After that the advances in space technologies and their geodetic applications provided impetus for their use in deformation measurements. GPS positioning technique has the biggest benefit of high accuracy 3D positioning; however, the vertical position is the least accurately determined component due to inherent geometric weakness of the system and atmospheric errors. Therefore, using GPS measurement technique in deformation measurements at millimeter level accuracy requires some special precautions, such as using forced centering equipment, applying special measuring techniques like the rapid static method for short baselines and designing special equipment for precise antenna height readings. In some cases, even these special precautions remain insufficient and hence, the GPS measurements need to be combined with another measurement technique to improve its accuracy in height component. In geodetic evaluation of deformations, static observations obtained by terrestrial and/or GPS technique are subject to a two–epoch analysis. The two–epoch analysis basically consists of independent Least Squares Estimation (LSE) of the single epochs and geometrical detection of deformations between epochs. Here, the aim is analysing 1D and 3D deformations of an engineering structure using GPS and levelling measurements data. During the 1D deformation analysis, three different approaches were performed separately. In the first and second approaches, height differences from precise levelling measurements and GPS measurements respectively were input in the analysing algorithm. In the third approach the combination of height differences from both techniques were evaluated for vertical deformation. While combining the two measurement sets, Helmert Variance Component Estimation (HVCE) and Minimum Norm Quadratic Unbiased Estimation (MINQUE) techniques were used. 3D deformation analysis only with GPS measurements was accomplished using S-transformation technique. The theories behind the used deformation analysis and variance component estimation methods are summarized in the chapters. Thereafter the optimal solution for combining the GPS and precise levelling data to improve the GPS derived heights and hence to provide reliable inputs via the optimal solution for the deformation investigations are discussed. The highway viaduct of which deformations were inspected in this study is 2160 meter long and crosses over a lake on 110 piers. It is located in active tectonic region very close to the North Anatolian Fault (NAF). With the aim of monitoring its deformations, four measurement campaigns including GPS sessions and precise levelling measurements were carried out with six–month intervals. The session plans were prepared appropriately for each campaign on a pre–positioned deformation network. The results of this study, experienced with measurements of the viaduct, are thought to be important remarks for deformation analysis studies using GPS measurements. As the first remark, GPS measurement technique can be used for determining deformations with some special precautions like using forced centering mechanisms to avoid centering errors, using special equipments for precision antenna height readings, using special antenna types to avoid multipath effects etc. However, even though these precautions are taken to provide better results in 1D and 3D deformation analysis, GPS measurements have to be supported with Precise Levelling measurements.

___

  • Baarda, W., (1973). S-transformation and criterion matrices, Netherlands Geodetic Commission Publications on Geodesy, 5, 1.
  • Biacs, Z.F., (1989). Estimation and hypothesis testing for deformation analysis in special purpose networks, Doktora Tezi, Calgary Üniversitesi, Calgary.
  • Blewitt, G., (1990). GPS techniques for monitoring geodynamics at regional scales, Proceedings, Second International Symposium on GPS, 495- 507, Kanada.
  • Caspary, W.F., (1987). Concept of network and deformation analysis, Monograph 11, School of Surveying, University of New South Wales, 1-183, New South Wales.
  • Chen, Y.G. ve Chrzanowski, A., (1985). Assessment of levelling measurements using the theory of MINQUE, Proceedings, 3rd International Symposium North American Vertical Datum, 389-400, Rockville.
  • Chen, Y.Q., ed. (1983). Analysis of deformation surveys – a generalized method, Teknik Rapor 94, Department of Surveying Engineering, University of New Brunswick, 1-262, Kanada.
  • Chrzanowski, A. ve Chen, Y.Q., (1986). Report of the ad hoc committee on the analysis of deformation surveys, Proceedings, FIG XVIII International Congress, 167-185, Toronto.
  • Chrzanowski, A., Chen, Y.Q., Secord, J.M. ve Chrzanowski, A.S., (1991). Problems and solutions in the integrated monitoring and analysis of dam deformations, CISM Journal, 45, 4, 547- 560.
  • Chrzanowski, A. ve Chrzanowski, A.S., (1995). Identification of dam deformation mechanism, Proceedings, MWA International Conference on Dam Engineering, 179-187, Kuala Lumpur.
  • Cooper, M.A.R., (1987). Control surveys in civil engineering, Blackwell Scientific, Oxford, USA.
  • Crocetto, N., Gatti, M. ve Russo, P., (2000). Simplified formulae for the BIQUE estimation of variance components in disjunctive observation groups, Journal of Geodesy, 74, 447-457.
  • Demirel, H., (1987). S-Transformation and deformation analysis, Proceedings, Birinci Türkiye Harita Teknik ve Bilimsel Kurultayı, 23-27, Ankara.
  • Erol, S. ve Ayan, T., (2003). An investigation on deformation measurements of engineering structures with GPS and levelling data case study, Proceedings, International Symposium on Modern Technologies, Education and Professional Practice in the Globalizing World, Sofia, Bulgaristan.
  • Featherstone, W.E., Denith, M.C. ve Kirby, J.F., (1998). Strategies for the accurate determination of orthometric heights from GPS, Survey Review, 34, 267, 278-296.
  • Fotopoulos, G., (2003). An analysis on the optimal combination of geoid, orthometric and ellipsoidal height data, Doktora Tezi, Calgary Üniversitesi, Calgary.
  • Fotopoulos, G. ve Sideris, M.G., (1997). On the estimation of variance components using GPS, geoid and levelling data, Proceedings, Canadian Geophysical Union Annual meeting: Challenges and opportunities for geophysics in Canada, Banff, Kanada.
  • Fraser, C.S., ve Gründig, L., (1985). The analysis of photogrammetric deformation measurements on Turtle Mountain, Photogrammetric Engineering and Remote Sensing, 51, 4, 207-216.
  • Grafarend, E.W., (1984). Variance-Covariance components estimation, theoretical results and geodetic applications, Proceedings, 16th European Meeting of Statisticians, Marburg.
  • Gründig, L., Neureither, M. ve Bahndorf, J., (1985). Detection and localization of geometrical movements, ASCE Journal of Surveying Engineering, 111, 2, 118-132.
  • Helmert, F.R., (1924). Die Ausgleichungsrechnung nach der Methode der kleinsten Quadratic, 3. Auflage.
  • Kızılsu, G., (1998). Precision analysis for Lageos I and Lageos II, Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul.
  • Niemeier, W., Teskey, W.F. ve Lyall, R.G., (1982). Precision, reliability and sensitivity aspects of an openpit monitoring network, Australian Journal of Geodesy, 37, 2, 1-27.
  • Pelzer, H., (1971). Zur Analyse geodatischer deformationsmessungen, Deutsche Geodatische Kommission, 164, C, 1-86.
  • Rao, C.R., (1970). Estimation of heterogeneous variances in linear models, Journal of American Statistical Association, 65, 161-172.
  • Rao, C.R., (1971). Estimation of variance components – MINQUE Theory, Journal of Multivariate Statistics, 1, 257-275.
  • Rao, C.R. ve Kleffe, J., (1988). Estimation of variance components and applications, North- Holland Series in Statistics and Probability, 3.
  • Sjöberg, L., (1984). Non-negative variance component estimation in the Gauss-Helmert Adjustment Model, Manuscripta Geodaetica, 9, 247-280.
  • Strang van Hees, G.L., (1982). Variance-covariance transformations of geodetic networks, Manuscripta Geodaetica, 7, 1-20.
  • Teskey, W.F. ve Biacs, Z.F., (1990). A PC-based program system for adjustment and deformation analysis of precise engineering and monitoring networks, Australian Journal of Geodesy, Photogrammetry and Surveying, 52, 37-55.
  • Wang, J., Stewart, M. ve Tsakiri, M., (1998). Stochastic modelling for static GPS baseline data processing, Journal of Surveying Engineering, 124, 4, 171-181.
  • Welsch, W.M., (1993). A general 7-parameter transformation for the combination, comparison and accuracy control of terrestrial and satellite network observations, Manuscripta Geodaetica, 18, 295-305.