Katı yakıtlı roket motorlarında daimi olmayan akışların ikili zaman adımlaması yöntemi ile sayısal benzetimi

Değişken iç geometriye sahip katı yakıtlı roket motorlarında iki boyutlu daimi olmayan akışların benzetimi yeni bir kapalı ikili zaman adımlama algoritması kullanılarak gerçekleştirildi. Zamana bağlı denklemler, keyfi Lagrange-Euler sistemi için yazılarak hücre merkezli sonlu hacimler yöntemi ile ayrıklaştırıldı ve yapılı ağlar üzerinde hareketli sınırlar ile çözüldü. Sıkıştırılamaz limitte yakınsama hızını etkileyen akustik ve taşınım hızları arasındaki fark önşartlandırma tekniği ile ortadan kaldırıldı. Yapay sönümleme terimleri düşük Mach sayılarında doğru olarak hesaplanacak şekilde ayarlandı. Önerilen kapalı ikili zaman adımlama algoritmasını kullanan keyfi Lagrange-Euler zaman adımlaması, geometrik korunum yasasını sağlamakta ve hareketsiz ağlarda elde edilen zaman doğruluğunu korumaktadır. Kullanılan keyfi Lagrange-Euler zaman adımlaması, daha az matris çarpımı içermesi ve matris tersinin hesaplanmasını gerektirmediğinden literatürde mevcut olanlara göre daha basittir. Her bir zaman adımında yeni ağ, cebirsel karşısonlu interpolasyon yöntemine dayanan rahatsızlık yöntemi kullanılarak üretildi. Lokal zaman adımlaması, artık düzeltici ve çokluağ yöntemleri kullanılarak yakınsama hızlandırıldı. Katı yakıtlı roket motoru benzeri konfigürasyonda daimi ve daimi olmayan akışların benzetimi hareketsiz ve hareketli ağlar kullanılarak başarı ile yapıldı. Elde edilen hız profilleri, basınç dalgalanmaları ve girdap kopmaları literatürdeki deneysel, analitik ve sayısal sonuçlar ile uyumludur. Hesaplanan sonuçlar, önerilen kapalı zaman algoritması ile geliştirilen akış çözücünün değişken iç geometriye sahip olan katı yakıtlı roket motorlarında iki boyutlu daimi olmayan akışların çözümü ve analizinde kullanılabileceğini göstermektedir.

Numerical simulation of unsteady flows in solid rocket motors with dual time stepping

A computer code, implementing a novel Dual Time Stepping (DTS) algorithm, is developed in order to simulate two-dimensional unsteady cold flow in Solid Rocket Motors (SRM) involving variable internal geometry. Simulation of unsteady flow at allspeeds is essential, since flow speed of combustion gases through an SRM ranges from incompressible limit to supersonic speeds and internal geometry of the SRM varies in time due to regression of combusting propellant surface. In this respect, present code solves compressible form of time dependent conservation laws, written in Arbitrary Lagrangian- Eulerian (ALE) form, on deforming grids at low Mach numbers (M

___

  • Arnone, A., Liou, M.S., Povinelli, L.A., (1995). Integration of Navier-Stokes Equations Using Dual Time Stepping and a Multigrid Method, AIAA Journal, 33, 985-990.
  • Belov, A., Martinelli, L., Jameson, A., (1995). A New Implicit Algorithm with Multigrid for Unsteady Incompressible Flow Calculations, AIAA Paper 1995-0049, 33rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA.
  • Chassaing, J.C., Gerolymos, G.A., Vallet, I., (2003). Reynolds-Stress Model Dual-Time-Stepping Computation of Unsteady 3-D Flows, AIAA Journal, 41, 1882-1894.
  • Dailey, L.D., Pletcher, R.H., (1996). Evaluation of Multigrid Acceleration for Preconditioned Time- Accurate Navier-Stokes Algorithms, Computers & Fluids, 25, 791-811.
  • Donea, J., Huerta, A., Ponthot, J., Rodriguez-Ferran, A., (2004). Arbitrary Lagrangian-Eulerian Methods, in Encyclopedia of Computational Mechanics, Volume 1: Fundamentals, John Wiley&Sons Ltd.
  • Dubuc, L., Cantariti, F., Woodgate, M., Gribben, B., Badcock, K.J., Richards, B.E., (2000). A Grid Deformation Technique for Unsteady Flow Computations, International Journal of Numerical Methods in Fluids, 32, 285-311.
  • Farhat, C., Geuzaine, P., Crandmont, C., (2001). The Discrete Geometric Conservation Law and the Nonlinear Stability of ALE Schemes for the Solution Flow Problems on Moving Grids, Journal of Computational Physics, 174, 669-694.
  • Geuzaine, P., Crandmont, C., Farhat, C., (2003). Design and Analysis of ALE Schemes with Provable Second-order Time-accuracy for Inviscid and Viscous Flow Simulations, Journal of Computational Physics, 191, 206-227.
  • Giatonde, A.L., (1994). A Dual-Time Method for the Solution of the Unsteady Euler Equations,” Aeronautical Journal, 2049, 283-291.
  • Gleize, V., Le Pape, A., (2006). Low Mach Number Preconditioning for Unsteady Flow in General “ALE” Formulation, AIAA Paper 2006-687, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9-12 January.
  • Guillard, H., Farhat, C., (2000). On the Significance of the Geometric Conservation Law for Flow Computations on Moving Meshes, Computer Methods in Applied Mechanics and Engineering, 190, 1467-1482.
  • Hirt, C.W., Amsden, A.A., Cook, J.L., (1974). An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds, Journal of Computational Physics, 14, 227-253.
  • Jameson, A., Schmidt, W., Turkel, E., (1981). Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time- Stepping Schemes, AIAA Paper 81-1259, 14th AIAA Fluid and Plasma Dynamic Conference, Palo Alto, USA.
  • Jameson, A., Baker, T.J., (1983). Solution of the Euler Equation for Complex Configurations, AIAA Paper 83-1929, Proceedings of 6th AIAA Computational Fluid Dynamics Conference, Danvers.
  • Jameson, A., (1983). Solution of the Euler Equations for Two-dimensional, Transonic Flow by a Multigrid Method, Applied Mathematics and Computation, 13, 327-356.
  • Jameson, A., (1984). Transonic Flow Calculations, Mechanical and Aerospace Engineering Report, MAE 1651, Princeton University, NJ.
  • Jameson, A., (1985). Multigrid Algorithms for Compressible Flow Calculations, Mechanical and Aerospace Engineering Report, MAE 1743, Princeton University, NJ.
  • Jameson, A., (1991). Time Dependent Calculations Using Multigrid with Application to Unsteady Flows past Airfoils and Wings, AIAA Paper 91- 1596, AIAA 10th Computational Fluid Dynamics Conference, Honolulu, Hawaii, USA.
  • Kuentzmann, P., (2004). Introduction to Solid Rocket Propulsion, NATO Research and Technology Organization Report, RTO-EN-023, Rhode-Saint-Genese, Belgium.
  • Lupoglazoff, M., Vuillot, F., (1992). Numerical Simulation of Vortex Shedding Phenomenon in 2D Test Case Solid Rocket Motors, AIAA Paper 92-0776, 30th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, January 6-9.
  • Martinelli, L., Jameson, A., Grasso, F., (1986). A Multigrid Method for the Navier-Stokes Equations, AIAA Paper 86-0208, AIAA 24th Aerospace Sciences Meeting, Reno, NV.
  • Martinelli, L. Jameson, A., (1988). Validation of a Multigrid Method for the Reynolds Averaged Equations, AIAA Paper 88-0414, AIAA 26th Aerospace Sciences Meeting, Reno, NV.
  • Mavriplis, D.J., Yang, Z., (2006). Construction of the Discrete Geometric Conservation Law for High-Order Time-Accurate Simulations on Dynamic Meshes, Journal of Computational Physics, 213, 557-573.
  • Merkle, C.L., Sullivan J.Y., Buelow, P.E.O., Venkateswaran, S., (1998). Computations of Flows with Arbitrary Equations of State, AIAA Journal, 36, 515-521.
  • Mulas, M., Chibbaro, S., Delussu, G., Di Piazza, I., Talice, M., (2002). Efficient Parallel Computations of Flows of Arbitrary Fluids for All Regimes of Reynolds, Mach and Grashoff Numbers, International Journal of Numerical Methods for Heat & Fluid Flow, 12, 637-657.
  • Rizzi, A., Eliasson, P., Lindbland, I., Hirsch, C., Lacor, C., Haeuser, J., (1993). The Engineering of Multiblock/Multigrid Software for Navier- Stokes Flows on Structured Meshes, Computers& Fluids, 22, 341-367.
  • Turkel, E., (1993). A Review of Preconditioning Methods for Fluid Dynamics, Applied Numerical Mathematics, 12, 257-284.
  • Turkel, E., (1999). Preconditioning Techniques in Computational Fluid Dynamics, Annual Review in Fluid Mechanics, 31, 385-416.
  • Thomas, P.D., Lombard, C.K., (1979). Geometric Conservation Law and its Application to Flow Computations on Moving Grids, AIAA Journal, 17, 1030-1037.
  • Uygun, M., Kırkköprü, K., (2007). Computation of Time-Accurate Laminar Flows Using Dual Time Stepping and Local Preconditioning with Multigrid, Turkish Journal of Engineering and Environmental Sciences, 31, 211-223.
  • Uygun, M., Kırkköprü, K., (2007). Numerical Solution of Unsteady Compressible Flows On Moving Grids Using Dual Time Stepping, Ankara International Aerospace Conference 2007, Ankara, 10-12 September
  • Venkatakrishnan, V., Mavriplis, D.J., (1996). Implicit Method for the Computation of Unsteady Flows on Unstructured Grids, Journal of Computational Physics, 127, 380-397.
  • Weiss, J., Smith, W.A., (1995). Preconditioning Applied to Variable and Constant Density Flows, AIAA Journal, 33, 2050-2057.
  • Weiss, J.M., Maruszewski, J.P., Smith, W.A., (1999). Implicit Solution of Preconditioned Navier-Stokes Equations Using Algebraic Multigrid, AIAA Journal, 37, 29-36.
  • Wong, A.S.F., Tsai, H.M., Cai, J., Zhu, Y., Liu, F., (2001). Unsteady Flow Calculations with a Multi-Block Moving Mesh Algorithm, AIAA Journal, 39, 1021-1029.