Frekans tepki fonksiyonlarından transdüser kütle etkilerinin kaldırılması

Frekans Tepki Fonksiyonlarının (FTF) kalitesinin parazit ve sistematik hatalar gibi faktörlerle olumsuz yönde etkilendiği bilinmektedir. FTF’larını kullanan çeşitli analizlerin doğruluğu ve güvenilirliği de ölçülmüş verilerin kalitesine bağlıdır. Bu çalışma ölçülmüş FTF’larındaki en önemli sistematik hatalardan biri olan transdüser kütle etkisini kaldırmayı amaçlamaktadır. Bu çalışmada ölçülmüş FTF’larındaki transdüser kütle etkisinin kaldırılması için Sherman-Morrison eşitliğine dayalı olarak geliştirilen yeni bir yöntem sunulmaktadır. Burada sunulan formülasyon genel amaçlıdır ve hem sabit hem de hareketli transdüser durumlarına uygulanabilmektedir. Transdüserin gezdirildiği test durumunda yardımcı bir kütle kullanımından yararlanılmaktadır. Bununla beraber, yapının transfer FTF’nun ölçümünde yardımcı kütle kullanımına gerek duyulmaması yeni yöntemin üstün özelliklerinden biridir. Bu sayede transfer FTF’nda ilave etkiler oluşturulmamaktadır. Yöntemin uygulanabilirliği sayısal simülasyonlarla ve deneysel veriler kullanılarak incelenmiştir.

Elimination of transducer mass loading effects from frequency response functions

It is well known that the quality of measured Frequency Response Functions (FRFs) is adversely affected by many factors, most significant sources being noise and systematic errors. It is also known that the accuracy and the reliability of various analyses using the measured FRFs depend strongly on the quality of measured data. This paper aims to remove one of the major systematic errors in measured FRFs, namely the mass loading effects of transducers. This paper presents a new method based on the Sherman-Morrison identity for the elimination of mass loading effects of transducers from measured FRFs. The formulation presented here is general in the sense that it can be applied for both fixed and moving transducer cases. In the case of moving transducer type of tests, the use of dummy mass is utilized. However, one of the distinct features of the new method is that it avoids the need for the measurement of cross-FRFs of a structure with a dummy mass attached to the structure, hence avoiding further contamination of cross-FRFs. The applicability of the method is also assessed using experimental as well as simulated data.

___

  • Akgün, M.A., Garcelon, J.H. ve Haftka, R.T., (2001). Fast exact linear and non-linear structural reanalysis and the Sherman-Morrison-Woodbury formulas, International Journal for Numerical Methods in Engineering, 50, 1587-1606.
  • Ashory, M.R., (1998). Correction of mass loading effects of transducers and suspension effects in modal testing, Proceedings of the13th International Modal Analysis Conference 815-823.
  • Ashory, M.R., (2002). Assessment of the mass-loading effects of accelerometers in modal testing, Proceedings of the 20th International Modal Analysis Conference, 1027-1031.
  • Cakar, O. ve Sanliturk, K.Y., (2002). Elimination of noise and transducer effects from measured response data, Proceedings of ESDA2002: 6th Biennial Conference on Engineering Systems Design and Analysis, Istanbul, Turkey, APM055.
  • Decker, J. ve Witfeld, H., (1995). Correction of transducer-loading effects in experimental modal analysis, Proceedings of the13th International Modal Analysis Conference, 1604-1608.
  • Dossing, Ole, (1991). Prediction of transducer mass-loading effects and identification of dynamic mass, Proceedings of the 9th International Modal Analysis Conference, 306-312.
  • Ewins, D.J., (2000). Modal testing: Theory, practice and applications, Second Ed., Research Studies Press.
  • Hager, W.W., (1989). SIAM Review, 31, 2, 221-239. Updating the inverse of a matrix.
  • Jung, H. ve Ewins, D.J. (1992). On the use of simulated “experimental” data for evaluation of modal analysis methods, Proceedings of the 10th International Modal Analysis Conference 421-429.
  • Level,, P., Moraux, D., v.d., (1996). On a direct inversion of the impedance matrix in response reanalysis, Communications in Numerical Methods in Engineering, 12, 151-159.
  • Marudachalam K. ve Wicks A.L., (1991). An attempt to quantify the errors in the experimental modal analysis, Proceedings of the 9th International Modal Analysis Conference 1522-1527.
  • McConnell, K.G., (1995). Vibration testing, Theory and practice, John Willey & Sons, Inc.
  • McConnell, K.G. ve Cappa, P., (2000). Transducer inertia and stinger stiffness effects on FRF measurements, Mechanical Systems and Signal Processing 14, 4, 625-636.
  • Mitchell, L.D., (1994). Modal test methods-quality, quantity and unobtainable, Sound and Vibration 10-16, November.
  • Sanliturk, K.Y, Ewins., D.J. ve Stanbridge, A.B., (2001a) Underplatform dampers for turbine blades: theoretical modeling, analysis and comparison with experimental data, ASME Journal of the Engineering for Gas Turbines and Power, 123, 4, 919-929.
  • Sanliturk, K.Y., Ewins, D.J., Elliot, R. ve Green, S.J., (2001b). Friction damper optimization: simulation of rainbow tests, ASME Journal of the Engineering for Gas Turbines and Power, 123(4), 930-939.
  • Sanliturk, K.Y., (2002) An efficient method for linear and nonlinear structural modifications, Proceedings of ESDA2002:6th Biennial Conference on Engineering Systems Design and Analysis, Istanbul, Turkey, APM028.
  • Sanliturk, K. Y. ve Cakar, O., (2003) A new method for noise elimination from measured frequency response functions, Mechanical Systems and Signal Processing, (submitted).
  • Sherman, J. ve Morrison, W.J., (1950). Adjustment of an inverse matrix corresponding to a change in one element of a given matrix, Annals of Mathematical Statistics, 21, 1, 124-127.
  • Silva, J.M.M., Maia, N.M.M. ve Ribeiro, A.M.R., (1997). Some application of coupling/uncoupling techniques in structural dynamics-Part 1: solving the mass cancellation problem, Proceedings of the15th International Modal Analysis Conference 1431-1439.
  • Silva, J.M.M., Maia, N.M.M. ve Ribeiro, A.M.R., (2000). Cancellation of mass-loading effects of transducers and evaluation of unmeasured frequency response functions, Journal of Sound and Vibration, 236, 5, 761-779.
  • Wicks, A. L., (1991). The quality of modal parameters from measured data, Proceedings of the 9th International Modal Analysis Conference 1623-1625.