FBB TiN kaplamalarda taban malzemenin kalıntı gerilme üzerine etkisi

Sert seramik kaplamaların yük altında davranışlarını etkileyen önemli özelliklerinden biri içerdikleri kalıntı gerilmelerdir. Kalıntı gerilmelerin niteliği ve büyüklüğü kaplamanın taban malzemeye yapışması ve sertliği üzerinde çok etkilidir. Kaplamaların içerdiği kalıntı gerilmeleri ölçmeye yönelik değişik teknikler vardır.Bu teknikler içerisinde en yaygın kullanılanlardan bir tanesi x-ışınları kırınımıdır (XRD). Bu çalışma kapsamında ark-fiziksel buhar biriktirme (ark-FBB) tekniği kullanılarak iki farklı taban malzeme (AISI 304 paslanmaz çelik ve AISI M4 yüksek hız takım çeliği) üzerine kaplanmış olan titanyum nitrür (TiN) kaplamaların kalıntı gerilmeleri klasik kitlesel teknik ve ince film tekniği olmak üzere iki farklı x-ışınları kırınım tekniği kullanılarak ölçülmüş ve karşılaştırılmıştır.

Substrate effects on residual stress of PVD TiN coatings

Residual stress is one of the most important characteristic of hard ceramic coatings that directly affects their behavior under loading. The residual stresses in hard ceramic films consist of thermal stress resulted from cooling after deposition due to differences in the thermal expansion coefficiency of the film and substrate, and growth stress or intrinsic stress generated during deposition. The magnitude of measured residual stress in the film depends on process parameters such as temperature, bias voltage, gas pressure, substrate, deposition time, and film thickness. The magnitude and the type of residual stress govern the adhesion and hardness properties of the coatings. Among several techniques utilized for residual stress measurements, techniques based on XRD are widely used. X-ray diffraction technique is relies on the elastic deformations within a polycrystalline material to measure residual stresses in a material. This study aims to analyze and compare the residual stress on hard ceramic TiN coatings produced by Arc-PVD technique. For this purpose two different XRD stress measurement techniques, namely classical bulk stress measurement, and thin film stress measurement were used. Every coating group were coated by using two different coating ticknesses (approximately 1$mu m$ and 3$mu m$), two different bias voltages (150V and 250V) and two different substrates (AISI 304 stainless steel and AISI M4 high speed steel).

___

  • Bendavid, A., Martin, P. J., Netterfield, R. P. ve Kinder, T.J., (1994). The properties of TiN films deposited by filtered arc evaporation Surface and Coatings Technology, 70, 97-106.
  • Demirler, U., Taptık, Y., Ürgen, M. ve Çakır. A. F., (2002). Ark-Fbb tekniği ile yapılan sert seramik kaplamalarda kalıntı gerilmenin klasik ve ince film XRD tekniği ile karşılaştırmalı ölçümü, 11. Metalurji ve Malzeme Kongresi Bildiriler Elektronik Kitabı, İstanbul.
  • Dölle, H., (1979). The influence of multiaxial stress states, stress gradients and elastic anisotropy on the evaluation of (Residual) stresses by X-rays, Journal of Applied Crystallography, 12, 489-501.
  • Ejiri, S., Sasaki, T. ve Hirose, Y., (1997). X-Ray stress measurement for TiN films evaporated by PVD, Thin Solid Films, 307, 178-182
  • Gauthier, J., Krause, T. W. ve Atherton, D. L., (1998). Measurement of residual stress in steel usind the magnetic barkhausen noise technique, NDT&E International, 31, 1, 23-31.
  • Gill, S. C. ve Clyne, T. W., (1994). Investigation of residual stress generation during thermal sprayingby continuous curvature measurement, Thin Solid Films, 250, 172-180.
  • Hognestad, H. ve Honne, A., (1998). Determination of stress in ferromagnetic steel by potential drop measurements, Materials Science and Technology, 14, 1109-1114.
  • Kandil, F. A., Lord, J. D., Fry, A. T. ve Grant, P. V., (2001). A review of residual stress measurement methods-A guide to technique selection, NPL Report MATC(A)04, Project CPM4.5 Measurement of Residual Stress in Components, NPL Materials Centre, Middlesex, UK.
  • Kazmanlı, M. K., (1999). Mo-N kaplamaların ark fiziksel buhar biriktirme yöntemi ile üretimi ve karakterizasyonu, Doktora Tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul.
  • Lord, J., (2000). Hole drilling techniques, BCA Structural Materials Workshop, NPL Materials Centre, Middlesex, UK.
  • Nolan, M., Perova, T., Moore, R.A., Moore, C. J., Berwick, K. ve Gamble, H.S., (2000). Micro- Raman study of stress distribution generated in silicon during proximity rapid thermal diffusion, Materials Science and Engineering, B73, 168–172.
  • Novotna, Z., Kralova, R., Novak, R. ve Marek, J., (1999). X-ray analysis of residual stresses in TiN coatings, Surface and Coatings Technology, 116–119, 424–427.
  • Noyan, I. C. ve Kohen, J. B.,(1987). Residual stress: measurement by diffraction and ınterpretation, Springer-Verlag New York Inc., Printed in Germany.
  • Oettel, H., Weidmann, R. ve Preibler, S., (1995). Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surface and Coatings Technology, 74-75, 273-278.
  • Sanjinés, R., Hones, P. ve Lévy, F., (1998). Hexagonal nitride coatings: electronic and mechanical properties of V2N, Cr2N and $delta$-MoN, Thin Solid Films, 332, 225-229.
  • Sarıoğlu, C., Demirler, U., Kazmanlı, M. K. ve Ürgen, M., (2002). Residual stresses in MoN and Mo2N coatings deposited by arc PVD on high speed steel substrate, Surface Modification Technologies XV, Ed: Sudarshan, T. S. and Jeandin, M., ASM International, Ohio and IOM Cominications Ltd., U.K.
  • Schoenig, F. C., (1995). Eddy current measurement of residual stress ınduced by shot peening in Titanium Ti-6Al-4V, Materials Evaluation, Jan., 22-26.
  • Suresh, S. ve Giannakopoulos, A. E., (1998). A new method for estimating residual stresses by instrumented sharp indentation, Acta materiala, 46, 16, 5755-5767.