Elektrokardiyogram (EKG) işaretlerinin temel tanım ve zarf fonksiyonları ile modellenmesi
Bu çalışmada, EKG işaretlerinin Temel Tanım ve Zarf Fonksiyonları ile modellenmesine yönelik yeni bir yöntem sunulmaktadır. Sunulan yöntem, herhangi bir EKG işaretine ilişkin $X_i(t)$ çerçeve fonksiyonunu $X_i(t) = C_ialpha_K(t)varphi_R(t)$ biçiminde modellemektedir. Bu modelde, $varphi_R(t)$, Temel Tanım Fonksiyonu olarak adlandırılmakta ve bir $C_i$ katsayısı ile X, çerçeve vektörünün en yüksek enerjisini taşımaktadır. $alpha_K(t)$, Zarf Fonksiyonu olarak adlandırılmakta ve $X_i$ çerçeve vektörünün zarfını oluşturmaktadır.$C_i$ katsayısı da Çerçeve Ölçekleme Katsayısı olarak adlandırılmaktadır. Temel Tanım ve Zarf Fonksiyonları iletim bandının herbir düğümüne yerleştirilerek EKG işaretinin iletimi, Temel Tanım ve Zarf Vektör Bankasının R ve K indislerinin ve $C_i$ katsayısının iletimine indirgenerek önemli bir sıkıştırma oranı gerçeklenmiştir.
Modeling electrocardiogram (ECG) signals via signature and envelope functions
In this paper, a new method to model ECG signals by means of "Signature and Envelope Functions" is presented. In this work, on a frame basis, any ECG signal $X_i(t)$ is modeled by the form of $X_i(t) = C_ialpha_K(t)varphi_R(t)$. In this model, $varphi_R(t)$ is defined as the Signature function since it carries almost maximum energy of the frame vector $X_i$ with a constant $C_ialpha_K(t)$ is referred to as Envelope Function since it matches the envelope of $C_ivarphi_R(t)$ to the original frame vector $X_i$; and $C_i$ is called the Frame-Scaling Coefficient. It has been demonstrated that the sets $Phi={varphi_R(t)}$ and A=${alpha_K(t)}$ constitute a "Signature and Envelope Functional Banks" to describe any measured ECG signal. Thus, ECG signal for each frame is described in terms of the two indices "R" and "K" of Signature and Envelope Functional Banks and the frame-scaling coefficient $C_i$. It has been shown that the new method of modeling provides significant data compression with low level reconstruction error while preserving diagnostic information in the reconstructed ECG signal. Furthermore, once Signature and Envelope Functional Banks are stored on each communication node, transmission of ECG signals reduces to the transmission of indexes "R" and "K" of $[alpha_K(t),varphi_R(t)]$ pairs and the coefficient $C_i$, which also result in considerable saving in the transmission band.
___
- Anant, K., Dowla, F., Rodrigue, G., (1995). Vector quantization of ECG wavelet coefficient, IEEE Signal Processing Letter, 2, 7, 129-131.
- Cardenas-Barrera, J.L., Lorenzo-Ginori, J.V., (1999). Mean-Shape vector quantizer for ecg signal compression, IEEE Transaction on Biomedical Engineering, 46, 62-70.
- Güz, Ü., Yarman, B.S., Gürkan, H., (2001). A New method to represent speech signals via predefined functional bases, Proceedings of ECCTD’01 European Conference on Circuit Theory and Design, Espoo, Finland, August 28-31, 2, 5-8.
- Güz, Ü., (2002). Türkçe konuşma için optimum temel tanım fonksiyonlarının belirlenmesinde yeni bir yaklaşım, Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Elektronik Mühendisliği Bölümü, İstanbul, Türkiye.
- Güz, Ü., Yarman, B.S., Gürkan, H., (2003). A New word recognition algorithm by using signature and envelope feature spaces, 16th European Conference on Circuit Theory and Design, Kraków, Poland, September 1-4, 3, 161-164.
- Güz, Ü., Gürkan, H., Yarman, B.S., (2004). A Novel method to represent the speech signals by using language and speaker ındependent predefined functions sets, ISCAS’04 IEEE International Symposium on Circuits and Systems, Vancouver, Canada, May 23-26, 3, 457-460.
- Jalaleddine, S.M., Hutchens, C.G., Strattan, R.D., Coberly, W.A., (1990a). ECG data compression techniques- a unified approach, IEEE Transaction on Biomedical Engineering, 37, 4, 329-342.
- Jalaleddine, S.M., Hutchens, C.G., (1990b). SAIESA new ECG data compression algorithm, Journal of Clinical Engineering, 15, 1, 45-51.
- Lee, H., Buckley, K., (1999). ECG data compression using cut and align beats approach and 2-D transforms, IEEE Transaction on Biomedical Engineering, 46, 5, 556-564.
- Karaş, A., (1997). Elektriksel işaretlerin temel tanım fonksiyonlarıyla karakterizasyonu, Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Elektronik Mühendisliği Bölümü, İstanbul, Türkiye.
- Mammen, C.P., Ramamurthi, B., (1990). Vector quantization for compression of multichannel ECG, IEEE Transaction on Biomedical Engineering, 37, 821-825.
- Moody, G.B., (1992). The MIT-BIH Arrhythmia Database CD-ROM. Second Ed., Harvard-MIT Division of Health Sciences and Technology.
- Nagasaka, Y., Iwata, A., (1993). Data compression of long time ECG recording using BP and PCA Neural Networks, IEICE Transaction Information Systems, E76-D, 12, 1434-1442.
- Tompkins, W.J., (1993). Biomedical digital signal processing, Prentice Hall, New Jersey.
- Yarman, B.S., Gürkan, H., Güz, Ü., Aygün, B., (2001). A novel method to represent ECG signals via predefined personalized signature and envelope functions, EMBC2001 23RD Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Conference Digest-CD), Istanbul, Turkey, October 25-28, 778, 1-4.
- Yarman, B.S., Gürkan, H., Güz, Ü., Aygün, B., (2003). A new modeling method of the ECG signals based on the use of an optimized predefined functional database, Acta Cardiologica International Journal of Cardiology, 58, 3, 273-275.
- Zigel, Y., (1998). ECG signal compression, M.Sc. Thesis, Ben Gurion University of the Negev, Faculty of Engineering Sciences, Department of Electrical and Computer Engineering, Israel.