Ar-Ge projelerinin gerçek opsiyon değerleme bütünleşik bulanık çok ölçütlü modelle seçimi

Araştırma ve geliştirme; yeni bilgiler elde etmek ya da mevcut bilgileri ortaya çıkarmak amacıyla yapılan ve bilginin sistematik olarak toplanmasını, analizini ve yorumunu gerektiren bir çalışmadır. Ar-Ge’nin başlıca görevi teknolojik gelişmeleri kullanarak işletmenin devamlı yenilenmesini sağlama ve bu sayede kârın sürekliliğini sağlamak hatta artırmaktır. Yenilikçi fikir, değişim ve gelişim, yepyeni teknolojiye sahip olmak rekabette üretim verimi, fiyat, reklam ve pazarlama kadar önemlidir. Araştırma-geliştirme projeleri seçimi, gelişmekte olan ülkelerdeki işletmelerde gerek kaynak, gerekse zaman kısıtları açısından gelişmiş ülkelere göre daha önemlidir. Doğru ve şirket içinde sinerji yaratacak projelerin seçimi kaynakların verimli şekilde kullanılmasını sağlayacaktır. Ar-Ge projelerinin doğası gereği kurumsal getirileri çok boyutludur ve kazançları risklidir. Bu çalışma, Ar-Ge proje seçim sürecinin çok boyutlu tarafını incelemektedir. Ar-Ge proje seçenekleri arasından seçim, parasal (bulanık gerçek opsiyon değeri) ve parasal olmayan (kapasite, başarı olasılığı, eğilimler vb.) ölçütleri birlikte dikkate alan Bulanık Analitik Hiyerarşi Prosesi (AHP) yardımıyla yapılacaktır. Gerçek opsiyon yaklaşımı seçim sürecinin riskli tarafını hesaplamaya yardımcı olur. Gerçek opsiyon, akit fiyatı olarak adlandırılan önceden belirlenmiş maliyette, opsiyonun süresi olarak adlandırılan önceden belirlenmiş bir zaman diliminde, bir eylem (erteleme, genişletme, küçültme ya da bırakma) için harekete geçme hakkıdır; zorunluluk içermez. Değerleme sürecindeki bir diğer ele alınması gereken konu ise belirsizliktir. Literatürde, yeterli bilginin olmadığı durumlara yönelik bulanık gerçek opsiyon değerleme modelleri geliştirilmiştir. Önerilen yaklaşımı daha iyi gösterebilmek amacıyla yapılan gerçek bir çalışma da uygulama bölümünde anlatılmaktadır.

Selection of R&D projects with real options integrated fuzzy multi-criteria model

Research and development; is a term of activity that a foundation develops new products, processes or services by the way of employing scientists and engineers in accordance with the foundation’s workplace. In other words, R&D is a work that is made to reach new information or discover the existing know-how by gathering the data systematically, analyze and make comment on these data. The essential duty of R&D is to use the technological developing for carrying on and if possible augmenting the ability of the company’s profitability. In the competition process, innovation, evolution, development, and having brand new technology are as important as production efficiency, price, and advertisement and marketing. Phases of R&D projects could be defined: Phase Zero: Finding and eliminating raw ideas, at this beginning phase new commercially hopeful ideas are produced. These ideas are selected and transformed to suitable, consistent development projects. Phase One: Conceptual Research, in that phase, constraints and contents of raw ideas are understood. How to produce the ideas in hand from laboratory conditions to practice are made in that phase. Phase Two: Feasibility, the subject of this phase is to solve known problems and produce the cost and performance data for engineers and salesperson to undertake the research. Phase Three: Development, at the development phase, required technical properties, specifications, and production processes are determined to be able to produce the product. Phase Four: Early Commercialize, in general early commercialize is very dangerous and risky transition phase for financial supporters. The dissatisfaction related with this phase is determinant and highly anticipated. If the problems and troubles could not be defined well, though the market says contrary, presentation of the product should be postponed. While the valuation methods of R&D projects are evolved from basic to hard, they conducted a long process. At that required process the valuation methods are: Classical Methods, Portfolio methods, Organizational decision making methods, and Multicriteria evaluation methods. Real options are based on financial options. An option gives the holder the right to buy or sell the underlying asset by a certain date for a certain price but contains no obligation. A real option is a right to act an action (defer, expand, contract or abandon) in the predetermined cost called strike price and in the predetermined period called expiration time, beside does not contain an obligation. In this dissertation, Black-Scholes pricing method investigated under fuzziness will be utilized. In literature, fuzzy real option valuation models are developed to the lack of exact data situations. At first, a heuristic real option valuation process is developed for fuzzy state. At that process, present values of expected costs and expected cash flows are denoted with trapezoidal fuzzy numbers. The most suitable time for the exercise date of the option is determined by the help of possibilistic mean value and variance. In another study, fuzzy zero-one integer programming and fuzzy real option valuation are used in the selection of R&D portfolio. In these studies, policies that can be support for decision are considered in the selection of best R&D project process in a corporate. The mostly used method AHP is capable of handling multiple objectives for R&D projects and decomposing the problem into multilevel structure or hierarchy. Its data requirement is minimal and both qualitative and quantitative data can be considered and compared simultaneously in the model. Real circumstances in daily life are very often uncertain and vague in several ways. When there is a lack of information, a system might not be known completely. So, fuzzy AHP is required in these circumstances. Fuzzy real option valuation model and fuzzy AHP methods are integrated in this work. Qulitative and quantitative sides of the method are met together. The integrated method mentioned above is applied in a corporation owns respectable place in electronic industry in Turkey. Six R&D projects of this company are evaluated by using the concerned methods and the first one in the order is selected. Selection made by that method is shared with the company, however because of the breaking crisis the option to delay has to be used.

___

  • Barutçugil, İ.S., (1981). Teknolojik yenilik ve araştırma– geliştirme yönetimi, 20-21, Bursa Üniversitesi Yayınları, Bursa.
  • Brenner, M.S., (1994). Practical R&D project prioritization, Research Technology Management, 37, 38-42.
  • Buckley, J.J., (1985). Fuzzy hierarchical analysis, Fuzzy sets and systems, 17, 233-247.
  • Carlsson, C. ve Fullér, R., (2003). A fuzzy approach to real option valuation, Fuzzy Sets and Systems, 139, 297-312.
  • Carlsson, C., Fullér, R., Heikkilä, M. ve Majlender, P., (2007). A fuzzy approach to R&D project portfolio selection, International Journal of Approximate Reasoning, 44, 93-105.
  • Chen, H.H., Lee, A.H.I. ve Tong, Y., (2006). New product mix selection for a high technology company in a technology innovation network, Journal of Technology Management in China, 1, 174- 189.
  • Geske, R., (1977). The valuation of corporate liabilities as compund options, Journal of Financial and Quantitative Analysis, 12, 541-552.
  • Geske, R. ve Johnson, H.E., (1984). The valuation of corporate liabilities as compund options: A correction, Journal of Financial and Quantitative Analysis, 19, 231-232.
  • Kahraman, C., Cebeci, U. ve Ruan, D., (2004). Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey, International Journal of Production Economics, 87, 171-184.
  • Kuei, C.H., Lin, C., Aheto, J. ve Madus, C.N., (1994). A strategic decision model for the selection of advanced technology, International Journal of Production Research, 32, 2117-2130.
  • Lee, E.S. ve Li, R.L., (1988). Comparison of fuzzy numbers based on the probability measure of events, Computer and mathematics with Applications, 15, 887-896.
  • Liberatore, M.J., (1987). An extension of the analytic hierarchy process for industrial R&D project selection and resource allocation, IEEE Transactions on Engineering Management, 34, 12-18.
  • Saaty, T.L., (1980). The Analytic hierarchy process, Wiley, New York NY.
  • Tolga, A.Ç. ve Kahraman, C., (2008). Fuzzy multiattribute evaluation of R&D projects using a real options valuation model, International Journal of Intelligent Systems, 23, 1153-1176.
  • Wang, J. ve Hwang, W.L., (2007). A fuzzy set approach for R&D portfolio selection using a real options valuation model, Omega, 35, 247-257.
  • Wasti, N., (1999). Japon firmalarında Ar-Ge: Yöntemler ve yapılardan örnekler, ODTÜ Geliştirme Dergisi, 26, 204.
  • Zadeh, L., (1965). Fuzzy sets, Information Control, 8, 338-353.