PREDICTIVE ESTIMATION OF FINITE POPULATION MEAN USING GENERALISED FAMILY OF ESTIMATORS
PREDICTIVE ESTIMATION OF FINITE POPULATION MEAN USING GENERALISED FAMILY OF ESTIMATORS
Using predictive estimation procedure, an attempt has been made to develop some generalisedfamily of estimators for the finite population mean ¯J of survey variable J in the presence of known auxiliaryvariable K. The proposed class consists of mainly two different types of estimators namely, Ratio andExponential ratio-product type estimator. Theoretical conditions under which the proposed classes areless biased and more efficient then usual unbiased, ratio estimator and estimator due to [2], [12] and [13]have been obtained . It is also evaluated that at optimum values of unknown scalars the mean square error(MSE) of suggested classes tends to the MSE of regression estimator. Finally, these theoretical findings areillustrated by a numerical example
___
- Agrawal, M. C. and Roy, D. C. (1999). Efficient estimators for population variance with ratio-type and recreation- type predictor inputs. Metron, 57(3), 4-13.
- Bahl, S. and Tuteja, R. K. (1991). Ratio and product type exponential estimators. Journal of Informa- tion and Optimization Sciences, 12(1), 159-164.
- Cochran, W. G. (1977). Sampling Techniques, 3 edition. John Wiley and Sons, New York.
- Das, A. K. (1988). Contributions to The Theory of Sampling Strategies Based on Auxiliary Information. Ph.D. thesis submitted to B. C. K. V. Mohanpur, Nadia, West Bengal, India.
- Khan, H., Sanaullah, A., Khan, M. A. and Siddiqi, A. F. (2014). Improved exponential ratio type estimators for estimating population mean regarding full information in survey sampling. Accepted in World Applied Science journal.
- Khare, B. B. and Srivastava, S. (1993). Estimation of population mean using auxiliary character in the presence of non-response. Nat. Acad. Sc.Letters, India, 16, 111-114.
- Khoshnevisan, M., Singh, R., Chauhan, P., Sawan, N. and Smarandache, F. (2007). A general family of estimators for estimating population mean using known value of some population parameter(s). Far East J. Theor. Statist., 22, 181-191.
- Murthy, M. N. (1967). Sampling: Theory and Methods. Statistical Publishing Society, Calcutta, India. [9] Nayak, R. and Sahoo, L. (2012). Some alternative predictive estimators of population variance. Revista Colombiana de Estadstica, 35(3), 509-521.
- Pandey, B. N. and Dubey, V. (1988). Modified product estimator using using coefficient of variation of auxiliary variate, Assam Statistical Rev. 2(2), 64-66.
- Sanaullah, A., Ali, H. A., Noor-ul-Amin, M. and Hanif, M. (2014). Generalized exponentail chain ratio estimators under stratified two phase random sampling. Applied Mathematics and Computation, 226, 541-547.
- Singh, H. P., Solanki, R. and Singh, A. K. (2014). Predictive estimation of finite population mean using exponential estimators. Statistika.
- Srivastava, S. K. (1983). Predictive estimation of finite population mean using product estimator. Metrika, 30, 93-99.
- Singh, H. P. and Sokanki, R. S. (2012). Improved estimation of population mean in simple random sampling using information on auxiliary attribute. Applied Mathematics and Computation, 218(15), 7798-7812. [15] Sisodia, B. V. S. and Dwivedi, V. K. (1981). A modified ratio estimator using coefficient of variation of auxiliary variable. Journ. Ind.Soc. Agri. Starist., 33, 2, 13-18.
- Singh, G. N. (2003). On the improvement of product method of estimation in sample surveys. Jour. Ind. Soc.Agri. Starist., 56, 3, 267-275.
- Singh, H. P. and Tailor, R. (2003). Use of known correlation coefficient in the estimating the finite population mean. Statistics in transition, 6, 4, 555-560.
- Steel, R. G. D. and Torrie, J. H. (1960). Principles and Procedures of Statistics. New York, USA: McGraw.
- Upadhyaya, L. N., Singh, H. P., Chatterjee, S. and Yadav, R. (2011). Improved ratio and product exponential type estimators. Journal of Stat. Theo. and Prac, 5(2), 285-302.