ON THE NUMBER OF l-OVERLAPPING SUCCESS RUNS OF LENGTH k UNDER q- SEQUENCE OF BINARY TRIALS

ON THE NUMBER OF l-OVERLAPPING SUCCESS RUNS OF LENGTH k UNDER q- SEQUENCE OF BINARY TRIALS

probability. The probability mass function, first and second moments of the number of l-overlapping successruns of length k in X1, X2, . . . , Xnare obtained. The new distribution generalizes, Type I and Type IIq-binomial distributions which were recently studied in the literature

___

  • Hirano, K. (1986). Some Properties of the Distributions of Order k. Fibonacci Numbers and Their Appli- cations (eds. G.E. Bergum, A.N. Philippou, and A.F. Horadam), 43-53.
  • Philippou, A.N. and Makri, F.S. (1986). Success Runs and Longest Runs. Statistics & Probability Letters, , 211-215.
  • Ling, K.D. (1988). On Binomial Distribution of Order k. Statistics & Probability Letters, 6, 247-250.
  • Makri, F.S. and Philippou, A.N. (2005). On Binomial and Circular Binomial Distributions of order k for l -overlapping success runs of length k. Statistical Papers, 46(3), 411-432.
  • Eryilmaz, S. and Demir, S. (2007). Success runs in a sequence of exchangeable binary trials. Journal of
  • Statistical Planning and Inference, 137, 2954–2963.
  • Demir, S. and Eryilmaz, S. (2010). Run statistics in a sequence of arbitrarily dependent binary trials.
  • Statistical Papers, 51, 959–973. Eryilmaz, S. and Yalcin, F. (2011). Distribution of run statistics in partially exchangeable processes. Metrika, 73, 293–304.
  • Charalambides, C.A. (2010). The q -Bernstein basis as a q -binomial distributions. Journal of Statistical
  • Planning and Inference, 140, 2184–2190.
  • Yalcin, F. and Eryilmaz S. (2014). q -Geometric and q -Binomial Distributions of Order k. Journal of
  • Computational and Applied Mathematics, 271, 31–38. Yalcin, F. (2013). On a Generalization of Ling’s Binomial Distribution. ISTATISTIK, Journal of the Turkish Statistical Association, 6(3), 110–115.
  • Table 1. Probability mass function of N12,3,2 q x q = 0.5, θ = 0.5 q = 0.5, θ = 0.8 q = 0.8, θ = 0.5 4526 1169 0888 0694 0550 0438 0350 0312 0215 0172 0687 0002 7668 1243 0570 0270 0130 0062 0030 0016 0004 0003 0002
  • Table 2. E Nn,k,l for different values of θ, q, n, k and l q n l k (θ, q) (0.2, 0.5) (0.5, 0.2) (0.5, 0.5) (0.5, 1) 05509 00948 00177 00034 00041 (0.8, 0.5) 64504 10233 85677 54280 97420 5 05860 05968 12499 0 2 05510 00948 00177 00034 00041 06153 06279 18749 21949 5 0 2 05510 00948 00177 00034 00041 06226 06357 24999 37657 5
  • Table 3. V ar Nn,k,l for different values of θ, q, n, k and l q n l k (θ, q) (0.2, 0.5) (0.5, 0.2) (0.5, 0.5) (0.5, 1) 07342 01035 00191 00037 00061 (0.8, 0.5) 26448 42630 32089 66825 39907 5 14111 14252 24268 0 2 08553 01090 00192 00037 00061 16908 17082 40429 25853 5 0 2 09760 01145 00195 00037 00061 17900 18093 59765 00807 5 2 4 6 8 10 2 4 6 8 10 (n=12, l=2, q=0.5, θ=0.5) q=0.5 2 4 6 8 10 2 4 6 8 10 (n=12,k=5,q=0.5,θ=0.5) θ=0.8 2 4 6 8 10 2 4 6 8 10 (n=12, k=3, l=2, θ=0.5) 2 4 6 8 10 2 4 6 8 1012 (n=12, k=3, l=2, q=0.5)
  • Figure 1. Probability mass function of N12,k,l for different settings 2 4 6 8 θ q=0.5, k=4 2 4 6 8 θ q=0.5, k=6 2 4 6 8 θ q=0.5, k=8 2 4 6 8 θ q=0.9, k=4 2 4 6 8 θ q=0.9, k=6 2 4 6 8 θ q=0.9, k=8 2 4 6 8 θ 2 4 6 8 θ 2 4 6 8 θ Figure 2. E N10,k,l for different values of θ, q, k and l q 2 4 6 8 θ q=0.5, k=8 2 4 6 8 θ q=0.9, k=4 2 4 6 8 θ q=0.9, k=6 2 4 6 8 θ q=0.9, k=8 2 4 6 8 θ 2 4 6 8 θ 2 4 6 8 θ Figure 3. V ar N10,k,l for different values of θ, q, k and l q