KAZANILMIŞ EPİGENETİK DEĞİŞİKLİKLERİN KALITIMI VE HASTALIKLARA YATKINLIKTAKİ ROLÜ

DNA dizisinden bağımsız olarak hücrede gen ifadesini değiştiren epigenetik düzenlemeler, toksik maddeler, beslenme ve stres gibi çevresel faktörlerin etkisiyle fenotipte kalıcı değişikliklere neden olabilmektedir. Embriyonik dönemde epigenetik yeniden programlamadan kaçan bazı epigenetik işaretler, sonraki jenerasyonlara aktarılarak obezite, kanser ve kardiyovasküler hastalıklara yatkınlığın oluşmasında rol oynamaktadır. Son yıllarda yapılan çalışmalar, epigenetiğin etyopatolojisi tam olarak açıklanamayan kompleks hastalıklar ile ilişkili olduğuna işaret etmektedir. Bu derlemede, çevresel faktörlerin epigenom üzerindeki etkileri, bu etkilerin jenerasyonlar boyu aktarım mekanizmaları ve ilişkili olduğu patolojiler özetlenecektir. Anahtar Kelimeler: Epigenetik; çevresel etkenler; hastalıklara yatkınlık.

INHERITANCE OF ACQUIRED EPIGENETIC MODIFICATIONS AND ITS ROLE IN DISEASE SUSCEPTIBILITY

Epigenetic mechanisms affect cellular gene expression levels independently from DNA sequence. Epigenetic modifications can cause heritable phenotypic changes by the influence of environmental factors such as toxicants, nutrition and stress. Specific epigenetic marks that escape embryonic epigenetic reprogramming may have a role in obesity, cancer and cardiovascular disease susceptibility through subsequent generations. Recent studies point out that epigenetic may be related with complex diseases with unknown etiopathology. In this review, we summarized the effects of environmental factors on epigenome, epigenetic inheritance mechanisms across generations and related pathologies. Keywords: Epigenetic; environmental factors; disease susceptibility.

___

  • 1. Wang Y, Liu H, Sun Z. Lamarck rises from his grave: Parental environment‐induced epigenetic inheritance in model organisms and humans. Biological Reviews 2017.
  • 2. Heard E, Martienssen RA. Transgenerational epigenetic inheritance: Myths and mechanisms. Cell 2014; 157(1): 95-109.
  • 3. Weismann A. The germ plasm: A theory of heredity. 1893.
  • 4. Waddington C. Preliminary notes on the development of the wings in normal and mutant strains of drosophila. Proc Natl Acad Sci USA 1939; 25(7): 299-307.
  • 5. Peaston AE, Whitelaw E. Epigenetics and phenotypic variation in mammals. Mamm Genome 2006; 17(5): 365-74.
  • 6. Nilsson EE, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of disease susceptibility. Transl Res 2015; 165(1): 12-7.
  • 7. von Meyenn F, Reik W. Forget the parents: Epigenetic reprogramming in human germ cells. Cell 2015; 161(6): 1248-51.
  • 8. van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH, Braat DD, et al. Asymmetry in histone h3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 2005; 122(9): 1008-22.
  • 9. Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 2013; 339(6118): 448-52.
  • 10. Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, et al. Histone methyltransferases g9a and glp form heteromeric complexes and are both crucial for methylation of euchromatin at h3-k9. Genes Dev 2005; 19(7): 815-26.
  • 11. Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 2012; 48(6): 849-62.
  • 12. Nakamura T, Liu Y-J, Nakashima H, Umehara H, Inoue K, Matoba S, et al. Pgc7 binds histone h3k9me2 to protect against conversion of 5mc to 5hmc in early embryos. Nature 2012; 486(7403): 415-9.
  • 13. Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, et al. A maternal-zygotic effect gene, zfp57, maintains both maternal and paternal imprints. Dev Cell 2008; 15(4): 547-57.
  • 14. Ratnam S, Mertineit C, Ding F, Howell CY, Clarke HJ, Bestor TH, et al. Dynamics of dnmt1 methyltransferase expression and intracellular localization during oogenesis and preimplantation development. Dev Biol 2002; 245(2): 304-14.
  • 15. Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J, et al. Resistance of iaps to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 2003; 35(2): 88-93.
  • 16. D’Urso A, Brickner JH. Mechanisms of epigenetic memory. Trends Genet 2014; 30(6): 230-6.
  • 17. Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science 2010; 330(6004): 612-6.
  • 18. Sharma A. Transgenerational epigenetic inheritance: Focus on soma to germline information transfer. Prog Biophys Mol Biol 2013; 113(3): 439-46.
  • 19. Molinier J, Ries G, Zipfel C, Hohn B. Transgeneration memory of stress in plants. Nature 2006; 442(7106): 1046-9.
  • 20. Burton NO, Burkhart KB, Kennedy S. Nuclear rnai maintains heritable gene silencing in caenorhabditis elegans. Proc Natl Acad Sci USA 2011; 108(49): 19683-8.
  • 21. Yao Y, Robinson AM, Zucchi FC, Robbins JC, Babenko O, Kovalchuk O, et al. Ancestral exposure to stress epigenetically programs preterm birth risk and adverse maternal and newborn outcomes. BMC Med 2014; 12(1): 121.
  • 22. Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, et al. Sperm tsrnas contribute to intergenerational inheritance of an acquired metabolic disorder. Science 2016; 351(6271): 397-400.
  • 23. Čikoš Š, Veselá J, Il'ková G, Rehák P, Czikková S, Koppel J. Expression of beta adrenergic receptors in mouse oocytes and preimplantation embryos. Mol Reprod Dev 2005; 71(2): 145-53.
  • 24. Nilsson E, Larsen G, Manikkam M, Guerrero-Bosagna C, Savenkova MI, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLoS One 2012; 7(5): e36129.
  • 25. Anway MD, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors. Endocrinology 2006; 147(6): s43-s9.
  • 26. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005; 308(5727): 1466-9.
  • 27. Stouder C, Paoloni-Giacobino A. Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm. Reproduction 2010; 139(2): 373-9.
  • 28. Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol a-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 2007; 104(32): 13056-61.
  • 29. Manikkam M, Haque MM, Guerrero-Bosagna C, Nilsson EE, Skinner MK. Pesticide methoxychlor promotes the epigenetic transgenerational inheritance of adult-onset disease through the female germline. PLoS One 2014; 9(7): e102091.
  • 30. Jimenez-Chillaron JC, Ramon-Krauel M, Ribo S, Diaz R. Transgenerational epigenetic inheritance of diabetes risk as a consequence of early nutritional imbalances. Proc Nutr Soc 2016; 75(01): 78-89.
  • 31. Wei Y, Yang C-R, Wei Y-P, Zhao Z-A, Hou Y, Schatten H, et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci USA 2014; 111(5): 1873-8.
  • 32. Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 2004; 20(1): 63-8.
  • 33. Waterland RA, Dolinoy DC, Lin JR, Smith CA, Shi X, Tahiliani KG. Maternal methyl supplements increase offspring DNA methylation at axin fused. Genesis 2006; 44(9): 401-6.
  • 34. Dunn GA, Bale TL. Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 2009; 150(11): 4999-5009.
  • 35.Torrens C, Brawley L, Dance CS, Itoh S, Poston L, Hanson MA. First evidence for transgenerational vascular programming in the rat protein restriction model. The Journal of Physiology 2002;543:41-2.
  • 36. Nestler EJ. Transgenerational epigenetic contributions to stress responses: Fact or fiction? PLoS Biol 2016; 14(3): e1002426.
  • 37. Francis D, Diorio J, Liu D, Meaney MJ. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 1999; 286(5442): 1155-8.
  • 38. Franklin TB, Linder N, Russig H, Thöny B, Mansuy IM. Influence of early stress on social abilities and serotonergic functions across generations in mice. PLoS One 2011; 6(7): e21842.
  • 39. Yuan T-F, Li A, Sun X, Ouyang H, Campos C, Rocha NB, et al. Transgenerational inheritance of paternal neurobehavioral phenotypes: Stress, addiction, ageing and metabolism. Mol Neurobiol 2016; 53(9): 6367-76.
  • 40. Rodgers AB, Morgan CP, Leu NA, Bale TL. Transgenerational epigenetic programming via sperm microrna recapitulates effects of paternal stress. Proc Natl Acad Sci USA 2015;112(44): 13699-704.
  • 41. Wu L, Lu Y, Jiao Y, Liu B, Li S, Li Y, et al. Paternal psychological stress reprograms hepatic gluconeogenesis in offspring. Cell Metab 2016; 23(4): 735-43.
  • 42. van Otterdijk SD, Michels KB. Transgenerational epigenetic inheritance in mammals: How good is the evidence? FASEB J 2016; 30(7): 2457-65.
  • 43. Lumey L, Stein AD, Kahn HS, Romijn J. Lipid profiles in middle-aged men and women after famine exposure during gestation: The dutch hunger winter families study. Am J Clin Nutr 2009; 89(6): 1737-43.
  • 44. Stein AD, Lumey LH. The relationship between maternal and offspring birth weights after maternal prenatal famine exposure: The dutch famine birth cohort study. Hum Biol 2000: 641-54.
  • 45. Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun 2014; 5: 3746. 46. Veurink M, Koster M. The history of des, lessons to be learned. Pharm World Sci 2005; 27(3): 139-43.
  • 47. Blatt J, Van Le L, Weiner T, Sailer S. Ovarian carcinoma in an adolescent with transgenerational exposure to diethylstilbestrol. J Pediatr Hematol Oncol 2003; 25(8): 635-6.
  • 48. Han T, Hart C, Haig C, Logue J, Upton M, Watt G, et al. Contributions of maternal and paternal adiposity and smoking to adult offspring adiposity and cardiovascular risk: The midspan family study. BMJ open 2015; 5(11): e007682.
  • 49. Whitelaw E. Disputing lamarckian epigenetic inheritance in mammals. Genome Biol 2015; 16(1): 60.
  • 50. Bohacek J, Mansuy IM. A guide to designing germline-dependent epigenetic inheritance experiments in mammals. Nat. Methods 2017; 14(3): 243-9.
İstanbul Tıp Fakültesi Dergisi-Cover
  • Başlangıç: 1916
  • Yayıncı: İstanbul Üniversitesi Yayınevi
Sayıdaki Diğer Makaleler

SİNİR BASISI YAPAN BENİGN KEMİK VE YUMUŞAK DOKU TÜMÖRLERİ: CERRAHİ TEDAVİ SONUÇLARIMIZ VE LİTERATÜR DERLEMESİ

Ahmet SALDUZ, Arda ÇINAR, Mehmet ALP, Emre ÖZMEN, Ömer Naci ERGİN, İbrahim Levent ERALP

KAZANILMIŞ EPİGENETİK DEĞİŞİKLİKLERİN KALITIMI VE HASTALIKLARA YATKINLIKTAKİ ROLÜ

Gülsüm KAYMAN KÜREKÇİ, Merve BUNSUZ, Gizem ÖNAL, Pervin DİNÇER

İNFLAMATUAR BARSAK HASTALIĞI OLAN HASTALARDA BLASTOCYSTIS SPP.'NİN FARKLI TANI YÖNTEMLERİ İLE ARAŞTIRILMASI VE GENOTİPLENDİRİLMESİ

Özden BÜYÜKBABA BORAL, Deniz Gözde ÇELİK, Raim İLİAZ, Akın AKGÜL, Halim İŞSEVER, Filiz AKYÜZ

RADYOAKTİF SİNOVEKTOMİNİN NONHEMOFİLİK SİNOVİTLERDE HASTA MEMNUNİYETİ ÜZERİNE ETKİSİ

Elcil KAYA BİÇER, Semih AYDOĞDU, Hakkı SUR

TOPUK AĞRISININ NADİR BİR NEDENİ, KALKANEUS YERLEŞİMLİ İNTRAOSSEÖZ LİPOM: 9 OLGUNUN RETROSPEKTİF ANALİZİ ve LİTERATÜR DERLEMESİ

Ahmet SALDUZ, Mehmet DEMİREL, Murat ALTAN, Serkan BAYRAM

RADYONÜKLİD TEDAVİLERDE DOZ HIZI ÖLÇÜMLERİ VE HASTA TABURCU EDİLME KOŞULLARININ DEĞERLENDİRİLMESİ

Nami YEYİN, Mohammad ABUQBEITAH, İffet ÇAVDAR, Kerim SÖNMEZOĞLU, Mustafa DEMİR

PERİOPERATİF DÜŞÜK-DOZ KETAMİN SPİNAL ANESTEZİ UYGULANAN GEBELERDE POSTOPERATİF SEZERYAN AĞRISINI, BULANTI VE KUSMA SIKLIĞINI AZALTIR MI?

İpek Saadet EDİPOĞLU, Fatma Sevinç ÇELİK, Derya Özden OMAYGENÇ

RADYONÜKLİD TEDAVİLERDE DOZ HIZI ÖLÇÜMLERİ VE HASTA TABURCU EDİLME ZAMANININ DEĞERLENDİRİLMESİ

İffet ÇAVDAR, Kerim SÖNMEZOĞLU, Nami YEYİN, Mustafa DEMİR, Mohammad ABUQBEİTAH, Reşit AKYEL

NAZAL KEMİK KIRIĞININ KLİNİK VE RADYOLOJİK BULGULARI ARASINDAKİ UYUMU

Mehmet ÇELİK, Said SÖNMEZ, Mehmet Melih ÇİÇEK, Levent AYDEMİR, Mehmet Serkan ALPASLAN, Şenol ÇOMOĞLU