Soğuk Başlangıçların Etkisi: SiO2 Nanopartiküllerinin Modülasyonu

Topaklanmayı önleyici ve en çok bilinen yapılardan biri olarak SiO2 nanopartikül sentezi bu çalışmada modifiye bir metot ile araştırılarak, partikülün elde edilme süreci daha derinden incelenmiştir. Bu amaçla tetraetoksisilan başlangıç maddesi farklı sentez parametreleri ile; mesela konsantrasyon ve yüzey modifiye ajanı değiştirilerek kullanılmıştır. pH değerleri ve diğer reaksiyon malzemelerinin değerleri sabit tutularak sol-jel mekanizması ile bazik kataliz metodu, sıcaklık ayarlamaları ile sonuçta küresel, monodisperse partiküller elde edildi. Aynı zamanda hidrofobik bir karakter kazandırmak için uzun alkil zinciri içeren trialkoksisilan ile tetraalkoksisilan spontane (aynı anda) reaksiyonlarla birleştirildi ve yüzey kompozisyon kontrolü böylece sağlandı. İstatistiksel partikül boyut analizi ve atomik içerik analizi ile ortaya çıkmıştır ki SiO2 partiküllerinin boyutu hassas bir şekilde ayarlanabilir. Monodisperse, küresel ve yüzey modifiye SiO2 nanopartiküller sensörler, kontrollü yüzey kaplamaları, kimyasal taşıma gibi alanlarda kullanılabilecek umut verici malzemeler olarak gözükmektedir.

Effects of the Cool Beginnings: Modulation of SiO2 Nanoparticles

As one of the most prominent anticake agent, SiO2 nanoparticle synthesis method was modified and investigated for a better understanding of the fabrication process. Hence, tetraethoxysilane presursor was subjected to varying synthesis procedures such as concentration change and surface modification ligants. pH value and all the other material composition was kept the same and by implying sol-gel reaction mechanism, basic catalysis and temperature allowed us to obtain spherical and monodispersed nanoparticles. Additionally surface composition which provides hydrophobic character could also be controlled by spontaneous reaction of the long alkyl chain containing alkyltrialkoxysilanes with tetraalkoxysilane. Statistical analysis of the nanoparticle sizes with atomic composition, unveiled that SiO2 nanoparticle size can be modulated sensitively. Monodispersed, spherical and surface controlled nanoparticles seems promising candidated for the applications in sensors, controlled surface coatings and chemical delivery applications.

___

  • Advani, S. G. (2006). Processing and Properties of Nanocomposites. WORLD SCIENTIFIC. doi: 10.1142/6317
  • Arslan, O., Aytac, Z., & Uyar, T. (2016). Superhydrophobic, Hybrid, Electrospun Cellulose Acetate Nanofibrous Mats for Oil/Water Separation by Tailored Surface Modification. ACS Applied Materials & Interfaces, 8(30), 19747-19754. doi: 10.1021/acsami.6b05429
  • Arslan, O., Aytac, Z., & Uyar, T. (2017). Fluorescent Si QD decoration onto a flexible polymeric electrospun nanofibrous mat for the colorimetric sensing of TNT. Journal of Materials Chemistry C, 5(7), 1816-1825. doi: 10.1039/C6TC05521D
  • Bracho, D., Dougnac, V. N., Palza, H., & Quijada, R. (2012). Functionalization of Silica Nanoparticles for Polypropylene Nanocomposite Applications. Journal of Nanomaterials, 2012, 1-8. doi: 10.1155/2012/263915
  • Brinker, C. J., & Scherer, G. W. (2014). Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Saint Louis: Elsevier Science.
  • Çamurlu, H. E., Akarsu, E., Arslan, O., & Mathur, S. (2016). Nanocomposite glass coatings containing hexagonal boron nitride nanoparticles. Ceramics International, 42(7), 8856-8862. doi: 10.1016/j.ceramint.2016.02.133
  • Dixit, C. K., Bhakta, S., Kumar, A., Suib, S. L., & Rusling, J. F. (2016). Fast nucleation for silica nanoparticle synthesis using a sol–gel method. Nanoscale, 8(47), 19662-19667. doi: 10.1039/C6NR07568A
  • Grosso, D. (2011). How to exploit the full potential of the dip-coating process to better control film formation. Journal of Materials Chemistry, 21(43), 17033. doi: 10.1039/c1jm12837j
  • Guglielmi, M. (1997). Sol-Gel Coatings on Metals. Journal of Sol-Gel Science and Technology, 8(1), 443-449. doi: 10.1023/A:1018373404815
  • Hannon, J. C., Kerry, J., Cruz-Romero, M., Morris, M., & Cummins, E. (2015). Advances and challenges for the use of engineered nanoparticles in food contact materials. Trends in Food Science & Technology, 43(1), 43-62. doi: 10.1016/j.tifs.2015.01.008
  • Kessler, V. G. (2018). The Synthesis and Solution Stability of Alkoxide Precursors. Içinde L. Klein, M. Aparicio, & A. Jitianu (Ed.), Handbook of Sol-Gel Science and Technology (ss. 31-80). Cham: Springer International Publishing. doi: 10.1007/978-3-319-32101-1_1
  • LaMer, V. K., & Dinegar, R. H. (1950). Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. Journal of the American Chemical Society, 72(11), 4847-4854. doi: 10.1021/ja01167a001
  • Liu, Z., Sun, L., Li, F., Liu, Q., Shi, L., Zhang, D., … Qiu, Y. (2011). One-pot self-assembly of multifunctional mesoporous nanoprobes with magnetic nanoparticles and hydrophobic upconversion nanocrystals. Journal of Materials Chemistry, 21(44), 17615-17618. doi: 10.1039/C1JM13871E
  • Meier, M., Ungerer, J., Klinge, M., & Nirschl, H. (2018). Synthesis of nanometric silica particles via a modified Stöber synthesis route. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 559-564. doi: 10.1016/j.colsurfa.2017.11.047
  • Murray, E., Born, P., Weber, A., & Kraus, T. (2010). Synthesis of Monodisperse Silica Nanoparticles Dispersable in Non-Polar Solvents. Advanced Engineering Materials, 12(5), 374-378. doi: 10.1002/adem.201000108
  • Pokropivny, V. (Ed.). (2007). Introduction to nanomaterials and nanotechnology. Tartu: Tartu University Press.
  • Qi, D., Liu, C., Chen, Z., Dong, G., & Cao, Z. (2015). In situ emulsion copolymerization of methyl methacrylate and butyl acrylate in the presence of SiO2 with various surface coupling densities. Colloid and Polymer Science, 293(2), 463-471. doi: 10.1007/s00396-014-3433-3
  • Sajid, M., & Płotka-Wasylka, J. (2020). Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences. Microchemical Journal, 154, 104623. doi: 10.1016/j.microc.2020.104623
  • Stelzner, T., Pietsch, M., Andrä, G., Falk, F., Ose, E., & Christiansen, S. (2008). Silicon nanowire-based solar cells. Nanotechnology, 19(29), 295203. doi: 10.1088/0957-4484/19/29/295203
  • Vidal, K., Gómez, E., Goitandia, A. M., Angulo-Ibáñez, A., & Aranzabe, E. (2019). The Synthesis of a Superhydrophobic and Thermal Stable Silica Coating via Sol-Gel Process. Coatings, 9(10), 627. doi: 10.3390/coatings9100627
  • Wang, H., Chen, E., Jia, X., Liang, L., & Wang, Q. (2015). Superhydrophobic coatings fabricated with polytetrafluoroethylene and SiO2 nanoparticles by spraying process on carbon steel surfaces. Applied Surface Science, 349, 724-732. doi: 10.1016/j.apsusc.2015.05.068
  • Wang, X.-D., Shen, Z.-X., Sang, T., Cheng, X.-B., Li, M.-F., Chen, L.-Y., & Wang, Z.-S. (2010). Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate. Journal of Colloid and Interface Science, 341(1), 23-29. doi: 10.1016/j.jcis.2009.09.018
  • Yong, W. Y. D., Zhang, Z., Cristobal, G., & Chin, W. S. (2014). One-pot synthesis of surface functionalized spherical silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 460, 151-157. doi: 10.1016/j.colsurfa.2014.03.039
  • Zhang, J. H., Zhan, P., Wang, Z. L., Zhang, W. Y., & Ming, N. B. (2003). Preparation of monodisperse silica particles with controllable size and shape. Journal of Materials Research, 18(3), 649-653. doi: 10.1557/JMR.2003.0085
  • Zhang, X., Zheng, F., Ye, L., Xiong, P., Yan, L., Yang, W., & Jiang, B. (2014). A one-pot sol–gel process to prepare a superhydrophobic and environment-resistant thin film from ORMOSIL nanoparticles. RSC Advances, 4(19), 9838. doi: 10.1039/c3ra47185c