Protective effects of Brenania brieyi (De Wild) E.M.A.Petit root bark fractions against inflammatory- mediated hemolysis and dyslipidemia in rats

Protective effects of Brenania brieyi (De Wild) E.M.A.Petit root bark fractions against inflammatory- mediated hemolysis and dyslipidemia in rats

Background and Aims: The inflammatory response, though protective, is the major cause of debilitating diseases when pro- voked excessively or if left unresolved. Brenania brieyi (De Wild) E.M.A.Petit is widely used in folk medicine for the treatment of inflammatory-related diseases. This study investigated the protective effects of methanol and chloroform root bark frac- tions of Brenania brieyi on inflammation-induced hemolysis and dyslipidemia.Methods: Anti-inflammatory activity was investigated by inserting 20 mg of autoclaved cotton pellets into forty-five rats ran- domly distributed into nine groups (n=5), this excluded group 1 (baseline). The extent of hemolysis and dyslipidemia in the inflamed rats was ascertained from hematological parameters, lipid profile, and lipidemic index, while the possible underly- ing mechanisms of inflammation were determined using standard procedures.Results: Treatment with varying doses of the root bark fractions of B. brieyi elicited a significant (p< 0.05) decrease in granu- loma tissue and an increase (p<0.05) in hemoglobin, red and white blood cell count, packed cell volume, and platelets compared with the untreated group 2. A significant (p<0.05) decrease in cholesterol, triacylglycerols, and low-density lipoprotein, and a non-significant (p>0.05) increase in high-density lipoprotein were observed in almost all the test groups compared with group 2. There was a significant restoration of atherogenic and dyslipidemia indices and inhibition of acetic acid-induced vascular per- meability, membrane hemolysis, and platelet aggregation in the fraction-treated groups compared with the control. Conclusion: The findings from this study suggest that B. brieyi inhibits exudation and proliferation of granuloma-forming cells and also has the potential to restore the hematological parameters and lipid anomalies to their physiologic state under chronic inflammation. The possible mechanisms of its action could be inhibition of vascular permeability, stabilization of the membrane, or inhibition of platelet aggregation. This justifies the use of the plant in traditional medicine and also demon- strates its potential as a target for the discovery of new anti-inflammatory agents.

___

  • Acay, A., Ulu, M.S., Ahsen, A., Ozkececi, G., Demir, K., Ozuguz, U., … Acarturk, G. (2014). Atherogenic index as a predictor of athero- sclerosis in subjects with familial Mediterranean fever. Medicina, 50(6), 329-333. https://doi.org/10.1016/j.medici.2014.11.00.
  • Alabi, A.O., Ajayi, A.M., Omorogbe, O. & Umukoro, S. (2019). Anti- nociceptive and anti-inflammatory effects of the aqueous extract of blended leaves of ocimumgratissium and psidium guajava. Clinical Phytoscience, 5, 34-42. https://doi.org/10.1186/s40816-019-0130-2.
  • Aladaileh, S.H., Saghir, S.A.M., Murugesu, K., Sadikun, A., Ahmad, A., Kaur, G., … Murugaiyah V (2019). Antihyperlipidemic and anti- oxidant effects of Averrhoa carambola extract in high-fat diet-fed rats. Biomedicines, 7, 72-93. Doi:10.3390/biomedicines7030072.
  • Albers, J.J., Warnick, G.R., Chenng, M.C. (1978). Quantitation of high-density lipoproteins. Lipids, 13, 926-932. https://doi. org/10.1007/BF02533852
  • Allain, C.C., Poon, L.S., Chan, C.S., Richmond, W. & Fu, P.C. (1974). Enzymatic determination of total serum cholesterol. Clinical Chemistry, 20, 470-475. DOI:10.1093/clinchem/20.4.470.
  • Altan, A., Balci, Y.H., Karataş, O., Taşkan, M.M., Gevrek, F., Çolak, S. & Akbulut, N. (2020). Free and liposome form of gallic acid im- proves calvarial bone wound healing in Wistar rats. Asian Pacific Journal of Tropical Biomedicine, 10, 156-163.Doi: 10.4103/2221- 1691.280297.
  • Antonisamy, P., Agastian, P., Kang, C-W., Kim, N. & Kim. J-H. (2019). Anti-inflammatory activity of rhein isolated from the flower of Cas- sia fistula L. And possible underlying mechanisms. Saudi Journal of Biological Sciences, 26, 96-104. Doi: 10.1016/j.sjbs.2017.04.011.
  • Anyasor, G.N., Okanlawon, A.A. & Ogunbiyi, B. (2019). Evaluation of anti-inflammatory activity of Justicia secunda Vahl leaf extract using in vitro and in vivo inflammation models. Clinical Phytosci- ences, 5, 49-61. https://doi.org/10.1186/s40816-019-0137-8.
  • Born, G.V.R. & Cross, M.J. (1963). Inhibition of aggregation of blood platelets by substances related to adenosine diphosphate. The Journal of Physiology, 166, 29-30. Doi: 10.1113/jphysiol.1963. sp007185.
  • Chakraborty, S., Majumder, S., Ghosh, A., Saha, S. & Bhattacharya, M. (2021). Metabolomics of potential contenders conferring an- tioxidant property to varied polar and non-polar solvent extracts of Edgaria darjeelingensis C. B.Clarke. Bulletin of National Research Centre, 45, 48-59. https://doi.org/10.1186/s42269-021-00503-3.
  • Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., … Zhao, L. (2018). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9, 7204-7218. Doi: 10.18632/on- cotarget.23208.
  • Chukwuma, I.F., Nkwocha, C.C., Ezeanyika, L.U.S. & Ogugua, V.N. (2020a). Phytochemical Investigation and In Vitro Antioxidant Poten- cy of Root Bark of Brenania brieyi fractions. Tropical Journal of Natural Products Research, 4(11), 970-975. doi.org/10.26538/tjnpr/v4i11.21.
  • Chukwuma, I.F., Apeh, V.O., Ezeanyika, L.U.S. & Ogugua, V.N. (2020b). Brenania brieyi root bark extracts ameliorate chronic inflammation-mediated oxidative stress in Wistar rats. Doi:10.3390/cahd2020-08556.
  • Chukwuma, I.F., Apeh, V.O., Nworah, F.N., Nkwocha, C.C., Emaimo, J., Ogugua, V. N. & Ezeanyika, L. U. S. (2022). Inhibition of phos- pholipase A2 and prostaglandin synthase activities as possible mechanistic insight into the anti-inflammatory activity of Bre- nania brieyi methanol and chloroform fractions. Thai Journal of Pharmaceutical Sciences. 2022;46(1):75-84 .
  • Chukwunelo, A.C., Anosike, A.C., Nnamonu, E.I., Ekpo, D.E., James, P.O. & Okonkwo, T.I. (2019) Evaluation of Leukocyte Mobilization and Platelet Aggregatory Effects of Ciprofloxacin, Lincomycin and Erythromycin in Wistar Albino Rats. Notulae Scientia Biologi- cae, 11(4), 345-351. DOI: 10.15835/nsb11410491.
  • Dragomanova, S., Tancheva, L., Georgieva, M. & Klisurov, R. (2019). Analgesic and anti-inflammatory activity of monoterpenoid Myrtenal in rodents. Journal of IMAB, 25, 2406-2413. https://doi. org/10.5272/jimab.2019251.2406.
  • Essawy, S.S., Abo-elmatty, D.M., Ghazy, N.M., Badr, J.M. & Sterner, O. (2014). Antioxidant and anti-inflammatory effects of Marrubium- alysson extracts in high cholesterol-fed rabbits. Saudi Pharmaceu- tical Journal, 22, 472-482. Doi: 10.1016/j.jsps.2013.12.004.
  • Esteve, E., Ricart, W. & Fernández-Real, J.M. (2005). Dyslipidemia and inflammation: An evolutionary conserved mechanism. Clini- cal Nutrition, 24(1), 6–31. doi: 10.1016/j.clnu.2004.08.004.
  • Fernandez-Moriano, C., Gomez-Serranillos, M.P. & Crespo, A. (2016). Antioxidant potential of lichen species and their second- ary metabolites. A systematic review. Pharmaceutical Biology, 54, 1-17. https://doi. 10.3109/13880209.2014.1003354.
  • Friedewald, W.T., Levy, R.I. & Fredrickson, D.S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plas- ma, without use of the preparative ultracentrifuge. Clinical Chem- istry, 18, 499-502. https://doi.org/10.1093/clinchem/18.6.499.
  • Gros, A., Ollivier, V. & Ho- Tin-Noe, B. (2014). Platelets in inflamma- tion: Regulation of leukocyte activities and vascular repair. Fron- tiers in Immunology, 5, 678-685. Doi: 10.3389/fimmu.2014.00678.
  • Haddouchi, F., Chaouche, T. M., Saker, M., Ghellai, I. & Boudjemai, O. (2021). Phytochemical screening, phenolic content and antiox- idant activity of Lavandula species extracts from Algeria. İstanbul Journal of Pharmacy, 51 (1), 111-117. https://dergipark.org.tr/en/ pub/iujp/issue/62349/938874.
  • Hwang, E.S. & Thi, N.D. (2020). Antioxidant and anti-inflammatory activities of Orostachys japonicus. Asian Pacific Journal of Tropical Biomedicines, 10, 516-522. doi: 10.4103/2221-1691.294092.
  • Ikumawoyi, Y.O., Awodele, O., Rotimi, K. & Fashina, A.Y. (2016). Eval- uation of the effects of the hydro-ethanolic root extract of zan- thoxylum zanthoxyloides on hematological parameters and oxi- dative stress in cyclophospamide treated rats. African Journal of Traditional Complementary and Alternative Medicine, 13, 153-159. Doi: 10.21010/ajtcam.v13i5.20.
  • Khan, F., Magaji, M. G., Abdu-Aguye, I., Hussaini, I. M., Hamza, A., Olarukooba, A.B. Sani, M.A. & Maje, I. M. (2021). Phytochemical profiling of the bioactive principles of Alysicarpus glumaceus (Vahl) DC. aerial parts. İstanbul Journal of Pharmacy, 51(2), 228- 238. DOI: 10.26650/IstanbulJPharm.2020.0071.
  • Kumar, R., Gupta, Y.K. & Singh, S. (2016). Anti-inflammatory and anti-granuloma activity of Berberis aristata DC. in experimental models of inflammation. Indian Journal of Pharmacology, 48, 155- 161. Doi 10.4103/0253-7613.178831.
  • Kuum, M., Guemmogne, R., Ndzana, M., Tchadji, J., Lissom, A. & Dimo, T. (2018). Anti-inflammatory effects of the stem barks from Albizia ferruginea (Mimosaceae) on chronic inflammation in- duced in rats. International Journal of Innovative Research in Med- ical Science, 3, 2183-2195. Doi: 10.23958/ijirms/vol03-i09/423.
  • Lorke, D. (1983). Determination of acute toxicity. Archives of Toxi- cology, 53, 275-287. Doi:10.1007/bf01234480.
  • Majouli, K., Hamdi, A. & Hlila, M.B. (2017). Phytochemical analysis and biological activities of Hertiacheirifolia L. roots extracts. Asian Pacific Journal of Tropical Medicines, 10:1134-1139. https://doi. org/10.1016/j.apjtm.2017.10.020.
  • Majumder, S., Ghosh, A. & Bhattacharya, M. (2020). Natural anti- inflammatory terpenoids in Camellia japonica leaf and probable biosynthesis pathways of the metabolome. Bulletin of National Research Center, 44, 141-151. https://doi.org/10.1186/s42269-020-00397-7.
  • Misra, A.K., Varma, S.K. & Kumar, R. (2018). Anti-inflammatory effect of an extract of Agave Americana on experimental Animals. Phar- macognosy Research, 10, 104-108. DOI: 10.4103/pr.pr_64_17.
  • Mosser, D.M., Hamidzadeh, K. & Goncalves, R. (2021). Macro- phages and the maintenance of homeostasis. Cellular and Molec- ular Immunology, 18, 579–587. https://doi.org/10.1038/s41423- 020-00541-3.
  • Mosquera, D.M.G., Ortega, Y.H., Kilonda, A., Dehaen, V., Pieters, L. & Apers, S. (2011). Evaluation of the in vivo anti-inflammatory ac- tivity of a flavonoid glycoside from Boldoa purpurascens. Phyto- chemistry Letters, 4, 231-234.
  • Mykola, V., Ganna, S. & Gennadiy, T. (2015). Hematological abnor- malities in Ukrainian patients with rheumatoid arthritis. Journal of Arthritis, 4, 146-148. DOI: 10.4172/2167-7921.1000146.
  • Naher, S., Aziz, M., Akter, M., Rahman, S. & Sajon, S. (2019). Anal- gesic, anti-inflammatory and anti-pyretic activities of methanolic extract of Cordyline fruticosa (L.) Chev. leaves. Journal of Research in Pharmacy, 23, 198-207. https://doi.org/10.12991/jrp.2019.125.
  • Nkwocha, C.C., Odo, I.F. & Umeakuana, C.D. (2019). Fatty Acid Pro- file of Some Selected Locally Consumed Vegetable Oils in Enugu State, Nigeria. America journal of food Science and Nutrition, 7, 130-135. http://pubs.sciepub.com/ajfn/7/4/3.
  • Odo, I.F., Ezeanyika, L.U.S., Ogugua, V.N., Joshua, P.E. & Okagu, I.U. (2017). FTIR and GC-MS spectroscopic analysis of methanol and chloroform extracts of Brenania brieyi root bark. American Jour- nal of Research Communication, 5, 44-54.
  • Ogbe, R.J., Agbese, S.P. & Abu, A.H. (2020). Protective effect of aqueous extract of Lophira lanceolata leaf against cisplatin-in- duced hepatorenal injuries and dyslipidemia in Wistar rats. Clini- cal Phytosciences, 6, 4-14. https://doi.org/10.1186/s40816-019-0149-4.
  • Oloyede, H.O.B., Lukman, H.Y. & Salawu, M.O. (2020). Protective potentials of ethyl acetate-ethanolic fraction of Carica papaya leaves against acetaminophen-induced liver damage in rats. Not- ulae Scientia Biologicae, 12(3), 556-567. https://doi.org/10.15835/ nsb12310629.
  • Patil, K.R., Mahajan, U.B., Unger, B.S., Goyal, S.N., Belemkar, S., Surana, S.J., … Patil, C.R. (2019). Animal Models of Inflammation for Screening of Anti-inflammatory Drugs: Implications for the Discovery and Development of Phytopharmaceuticals. Interna- tional Journal of Molecular Sciences, 20, 4367-4404. doi:10.3390/ ijms20184367.
  • Patil. K.R. & Patil, C.R. (2017). Anti-inflammatory activity of Barto- geni acid containing fraction of fruits of Barringtonia race mosa Roxb. In acute and chronic animal model of inflammation. Jour- nal of Traditional and Complementary Medicine, 7, 86-93. https:// doi.org/10.1016/j.jtcme.2016.02.001.
  • Rhetso, T., Seshadri, R.M., Ramnath, S. & Venkataramegowda, S. (2021). GC-MS based metabolite profiling and antioxidant activ- ity of solvent extracts of Allium chinense G Don leaves. Notulae Scientia Biologicae, 13, (2): 10791. DOI:10.15835/nsb13210791.
  • Shinde, U.A., Phadke, A.S., Nari, M., Mungantiwar, A.A., Dikshit, V.J. & Sarsf, M.N. (1999). Membrane stabilization activity-A possible mechanism of action for anti-inflammatory activity of Cedrusdeo-dora wood oil. Fitoteropia, 70, 251-257. PII: S 0 3 6 7 - 3 2 6 X 9 90 0 Ž .030-1.
  • Sokeng, S.D., Rokeya, B., Hannan, J.M.A., Ali, L. & Kamtchouing,P. (2013). Antidiabetic and antiplatelet aggregation activities of Brideliandellensisstem bark extracts. Journal of Diabetes Research, 2, 13-19. Doi: 10.5923/j.diabetes.20130201.03.
  • VasudhaUdupa, A., Gowda, B., Kumarswammy, B.E. & Shivanna, M.B. (2021). The antimicrobial and antioxidant property, GC–MS analysis of non-edible oil-seed cakes of neem, madhuca, and si- marouba. Bulletin of National Research Center, 45, 41-54. https:// doi.org/10.1186/s42269-021-00498-x.
İstanbul Journal of Pharmacy-Cover
  • ISSN: 2548-0731
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1965
  • Yayıncı: İstanbul Üniversitesi
Sayıdaki Diğer Makaleler

Protective effects of Brenania brieyi (De Wild) E.M.A.Petit root bark fractions against inflammatory- mediated hemolysis and dyslipidemia in rats

Ifeoma Felicia CHUKWUMA, Victor Onukwube APEH, Florence Nkechi NWORAH, Felix Ifeanyi NWAFOR, Lus EZEANYİKA, Victor Nwadiogo OGUGUA

Effect of flurbiprofen derivative (SGK597) on cell proliferation and apoptosis of breast cancer cell lines

İrem ATLIHAN, Sevgi KOÇYİĞİT SEVİNÇ, Oya ORUN, Özgür YILMAZ, Şükriye Güniz KÜÇÜKGÜZEL, Pinar MEGA TİBER

Effects of thymoquinone and etoposide combination on cell viability and genotoxicity in human cervical cancer hela cells

Hediye Gamze Nur ÇELEBİOĞLU, Merve BECİT-KIZILKAYA, Aydan ÇAĞLAYAN, Sevtap AYDIN DİLSİZ

Diapin®: A food supplement with diverse therapeutic potentials

Umar Faruk MAGAJİ, Selahattin BOYACI, Umut BULBUL, Sadettin AKÇA, Özlem SAÇAN, Refiye YANARDAĞ

Effects of vitamin D on proliferation, invasion and energy metabolism of MCF-7 breast cancer cell line

Emine Nedime KORUCU, Ali UNLU

Evaluation of the role of the pharmacists in the rational use of inhaler devices in the treatment of asthma and COPD

Narin ÖZTÜRK, Elif Seyma EKSİ, Zeliha PALA KARA, Sönmez UYDEŞ DOĞAN

Investigation of enzyme inhibition potentials, and antioxidative properties of the extracts of endemic Stachys bombycina Boiss.

Fatma AYAZ, Nuraniye ERUYGUR

Development and validation of an RP-HPLC method for simultaneous determination of curcumin and metronidazole in combined dosage form

Leyla BEBA POJARANİ, E. Vildan BURGAZ, Esra BALOGLU

Comparative assessment of different nanobodies that inhibit the interaction of B7-1/2 with CD28 as a potential therapeutic target for immune-related diseases by molecular modeling

Halil İbrahim BULUT, Nail BEŞLİ, Güven YENMİŞ

A comparative cross-sectional study investigating prevalence and patterns of sexual dysfunction among hypertensive and non-hypertensive men

Akinwumi AKİNYEDE, Adedunni OLUSANYA, Hazees MOHAMMED, Olumuyiwa FASİPE, Adesina ARİKAWE