PARTIAL PURIFICATION AND CHARACTERIZATION OF -GLUCOSIDASE FROM ALOE VERA L. LEAVES

Aloe vera L. Burm. fil. (sarısabır) yapraklarının pulpa kısmından β-glukozidaz kısmen saflaştırıldı ve bazı kinetik özellikleri incelendi. A.vera‟nın taze yaprakları kullanıldı; jel kısmı ayrıldı ve kalan yaprak pulpaları küçük parçalara kesildi. Yaprak pulpalarının fosfatla tamponlanmış %0.9 NaCl (PBS), pH 7.4 ile homojenizasyonunun ardından santrifüje edilmesiyle ham ekstre hazırlandı. β-Glukozidaz aktivitesi gösteren fraksiyon ham ekstreden %30-%65 amonyum sülfat ile çöktürüldü. Hidroksilapatit kolon kromatografisi sonucunda 200 mM fosfat tamponu ile β-glukozidaz aktivitesi gösteren tek bir pik elde edildi. Kısmen saflaştırılan enzim poliakrilamid jel elektroforezinde iki protein ve bir aktivite bandı gösterdi. Enzimin en yüksek aktiviteyi 50C‟de ve pH 4.4‟te gösterdiği ve 4-nitrofenil-β-D-glukopiranozide karşı Km değerinin 6.8x10-4 M, Vmax değerinin ise 4.58x10-3 U olduğu saptandı. β-Glukozidaz aktivitesi yıl boyunca incelendiğinde aktivitenin kış aylarında arttığı, yaz aylarında ise azaldığı bulundu.

PARTIAL PURIFICATION AND CHARACTERIZATION OF -GLUCOSIDASE FROM ALOE VERA L. LEAVES

The partial purification of β-glucosidase from the pulp of Aloe vera L. Burm. fil. (sarisabir) leaves and some of its kinetic properties is presented. The fresh leaves of A. vera were used; the gel portion was separated and the remaining leaf pulps were cut into small pieces. The crude extract was prepared by homogenization of the leaf pulps in phosphate buffered saline (PBS), pH 7.4 and subsequent centrifugation. β-Glucosidase active fraction was precipitated by 30%-65% ammonium sulphate from the crude extract. Hydroxylapatite column chromatography resulted in a single peak showing β-glucosidase activity eluted with 200 mM phosphate buffer. The partially purified enzyme showed two protein and a single activity band in polyacrylamide gel electrophoresis. It was found that the enzyme exhibited maximum activity at 50oC and at pH 4.4. Km and Vmax values for 4-nitrophenyl-β-D-glucopyranoside were 6.8x10-4 M and 4,58x10-3 U, respectively. When β-glucosidase activity was investigated throughout the year, it was found that the activity increased in winter and decreased in summer.

___

  • 1. Esen, A., (1993). β-Glucosidases: Overview. In: Esen, A. (Ed.), β-Glucosidases-Biochemistry and Molecular Biology, ACS Symposium Series 533, American Chemical Society, Washington, DC, pp.1-14.
  • 2. Poulton, J.E. (1990). Cyanogenesis in plants, Plant Physiol., 94: 401-405.
  • 3. Kleczkowski, K., Schell, J. (1995). Phytohormone conjugates: nature and function, Crit. Rev. Plant Sci., 14: 283-298.
  • 4. Akiyama, T., Kaku, H., Shibuya, N. (1998). A cell wall-bound β-glucosidase from germinated rice: Purification and properties, Phytochemistry, 48: 49-54.
  • 5. Sue, M., Ishihara, A., Iwamura, H. (2000). Purification and characterization of a β-glucosidase from rye (Secale cereale L.) seedlings, Plant Sci., 155: 67-74.
  • 6. Sue, M., Ishihara, A., Iwamura, H. (2000). Purification and characterization of a hydroxamic acid glucoside β-glucosidase from wheat (Triticum aestivum L.) seedlings, Planta, 210: 432-438.
  • 7. Cameron, R.G., Manthey, J.A., Baker, R.A., Grohmann, K. (2001). Purification and characterization of a β-glucosidase from Citrus sinensis var. Valencia fruit tissue, J. Agric. Food Chem., 49: 4457-4462.
  • 8. Lecas, M., Gunata, Z.Y., Sapis, J-C., Bayonove, C.L. (1991). Purification and partial characterization of β-glucosidase from grape, Phytochemistry, 30: 451- 454.
  • 9. Gerardi, C., Blando, F., Santino, A., Zacheo, G. (2001). Purification and characterization of β-glucosidase abundantly expressed in ripe sweet cherry (Prunus avium L.) fruit, Plant Sci., 160: 795-805.
  • 10. Rashid, M.H., Siddiqui, K.S. (1997). Purification and characterization of a β-glucosidase from Aspergillus niger, Folia Microbiol., 42: 544-550.
  • 11. Venturi, L.L., Polizeli, M.L., Terenzi, H.F., Furriel, R.P.M., Jorge, J.A. (2002). Extracellular β-D-glucosidase from Chaetomium thermophilum var. coprophilum: production, purification and some biochemical properties, J. Basic Microbiol., 42: 55-66.
  • 12. Capasso, F., Borrelli, F., Capasso, R., Di Carlo, G., Izzo, A.A., Pinto, L., Mascolo, N., Castaldo, S., Longo, R. (1998). Aloe and its therapeutic use, Phytother. Res., 12: S124-S127.
  • 13. Heggers, J.P., Kucukcelebi, A., Stabenau, C.J., Ko, F., Broemeling, L.D., Robson, M.C., Winters, W.D. (1995). Wound healing effects of Aloe gel and other topical antibacterial agents on rat skin, Phytother. Res., 9: 455-457.
  • 14. Koo, M.W.L. (1994). Aloe Vera: Antiulcer and antidiabetic effects, Phytother. Res., 8: 461-464.
  • 15. Saito, H. (1993). Purification of active substances of Aloe arborescens Miller and their biological and pharmacological activity, Phytother. Res., 7: S14-S19.
  • 16. Akev, N., Turkay, G., Can, A., Gurel, A., Yildiz, F., Yardibi, H., Ekiz, E.E., Uzun, H. (2007). Effect of Aloe vera leaf pulp extract on Ehrlich ascites tumours in mice, Eur. J. Cancer Prev., 16: 151-157.
  • 17. Beppu, H., Nagamuro, Y., Fujita, K. (1993). Hypoglycaemic and antidiabetic effects in mice of Aloe arborescens Miller var. natalensis Berger, Phytother. Res., 7: S37-S42.
  • 18. Okyar, A., Can, A., Akev, N., Baktir, G., Sütlüpinar, N. (2001). Effect of Aloe vera leaves on blood glucose level in type I and type II diabetic rat models, Phytother. Res., 15: 157-161.
  • 19. Yeoh, H.H., Tan, T.K., Koh, S.K. (1986). Kinetic properties of β-glucosidase from Aspergillus ornatus, Appl. Microbiol. Biotechnol., 25: 25-28.
  • 20. Odoux, E., Chauwin, A., Brillouet, J-M. (2003). Purification and characterization of vanilla bean (Vanilla planifolia Andrews) β-D-glucosidase, J. Agric. Food Chem., 51: 3168-3173.
  • 21. Hartmann-Schreier, J., Schreier P., (1986). Purification and partial characterization of β-glucosidase from papaya fruit, Phytochemistry, 25: 2271- 2274. 75
  • 22. Hsieh, M-C., Graham, T.L. (2001). Partial purification and characterization of a soybean β-glucosidase with high specific activity towards isoflavone conjugates, Phytochemistry, 58: 995-1005.
  • 23. Leah, R., Kigel, J., Svendsen, I., Mundy, J. (1995). Biochemical and molecular characterization of a barley seed β-glucosidase, J. Biol. Chem., 270: 15789- 15797.
  • 24. Sivakumar, G., Bati, C.B., Ucella, N. (2007). Demethyloleuropein and -glucosidase activity in olive fruits, Biotechnol. J., 2: 381-385.
  • 25. Tiselius, A., Hjertén, S., Levin, Ö. (1956). Protein chromatography on calcium phosphate columns, Arch. Biochem. Biophys., 65: 132-135.
  • 26. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol regent, J. Biol. Chem., 193: 265-275.
  • 27. Warburg, O., Christian, W. (1941). Isolierung und Kristallisation des Gärungsferments Enolase, Biochem. Z., 310: 384-421.
  • 28. Ornstein, L. (1964). Disc electrophoresis-I. Background and theory, Ann. N.Y. Acad. Sci., 121: 321-349.
  • 29. Davis, B.J. (1964). Disc electrophoresis-II. Method and application to human serum proteins, Ann. N.Y. Acad. Sci., 121: 404-427.
  • 30. Coughlan, M.P. (1988). Staining techniques for the detection of the individual components of cellulolytic enzyme systems, Methods Enzymol., 160: 135-144.