Histone deacetylase inhibitors providing an epigenetic treatment in cancer

Cancer is among the leading causes of death worldwide and is therefore one of the diseases in which there have been major medical advances and which is the focus of researchers. Drugs used in cancer treatment affect rapidly proliferating normal cells as well as cancer cells. In recent years, targeted therapy has been provided by identifying specific pathways in cancer cells. Epigenetic mechanisms are among the targeted therapies in cancer treatment. Epigenetic regulators ensure the continuity of the normal process by inducing epigenetic changes through epigenetic mechanisms such as DNA methylation, histone post-translational modifications, and non-coding RNA regulation. Histone deacetylases (HDACs), which are involved in transcription-independent events such as DNA repair and mitosis, are enzymes that remove acetyl groups attached to the lysine residue in the amino terminal tails of histones. Histone deacetylase inhibitors (HDACIs) that provide epigenetic treatment of cancer, which play a key role in the balance between acetylation and deacetylation of histone, have been extensively studied by researchers. Today, there are four HDACIs on the market approved by the FDA (Food and Drug Administration) and combinations of these drugs with agents that show anticancer activity by different mechanisms are being studied. Promising results have been obtained from these combinations, and further studies are ongoing on hybrid derivatives of certain HDACIs in various stages.

___

  • Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K., & Schapira, M. (2012). Epigenetic protein families: A new frontier for drug discovery. Nature Reviews Drug Discovery, 11, 384–400. https://doi.org/10.1038/nrd3674
  • Barbarotta, L., & Hurley, K. (2015). Romidepsin for the treatment of peripheral T-cell lymphoma. Expert Opinion on Investigational Drugs, 24(7), 965-979.
  • Bass, A. K. A., El-Zoghbi, M. S., Nageeb, E. S. M., Mohamed, M. F. A., Badr, M., & Abuo-Rahma, G. E. D. A. (2021). Comprehensive review for anticancer hybridized multitargeting HDAC inhibitors. European Journal of Medicinal Chemistry, 209, 112904. https://doi.org/10.1016/j.ejmech.2020.112904
  • Bertrand, P. (2010). Inside HDAC with HDAC inhibitors. European Journal of Medicinal Chemistry, 45, 2095–2116. https://doi.org/10.1016/j.ejmech.2010.02.030
  • Brown, S., Pawlyn, C., Tillotson, A., Sherratt, D., Flanagan, L., Low, E., … Phase, E. (2021). Original study combination therapy in relapsed myeloma : Results of the phase 2 MUK four trial. Clinical Lymphoma, Myeloma and Leukemia, 21(3), 154-161. https://doi.org/10.1016/j.clml.2020.11.019
  • Campbell, P., & Thomas, C. M. (2017). Belinostat for the treatment of relapsed or refractory peripheral T-cell lymphoma. Journal of Oncology Pharmacy Practice, 23(2), 143–147. https://doi.org/10.1177/1078155216634178
  • Cao, J., & Yan, Q. (2020). Cancer epigenetics, tumor immunity, and immunotherapy. Trends in Cancer, 6(7), 580–592. https://doi.org/10.1016/j.trecan.2020.02.003
  • Cappellacci, L., Perinelli, D. R., Maggi, F., Grifantini, M., & Petrelli, R. (2018). Recent progress in histone deacetylase inhibitors as anticancer agents. Current Medicinal Chemistry, 27(15), 2449–2493. https://doi.org/10.2174/0929867325666181016163110
  • Conforti, F., Davies, E. R., Calderwood, C. J., Thatcher, T. H., Jones, M. G., Smart, D. E., … Davies, D. E. (2017). The histone deacetylase inhibitor, romidepsin, as a potential treatment for pulmonary fibrosis. Oncotarget, 8(30), 48737–48754. https://doi.org/10.18632/oncotarget.17114
  • Dizon, D. S., Damstrup, L., Finkler, N. J., Lassen, U., Celano, P., Glasspool, R., … Penson, R. T. (2012). Phase II activity of belinostat (PXD-101), carboplatin, and paclitaxel in women with previously treated ovarian cancer. International Journal of Gynecological Cancer, 22(6), 979–986. https://doi.org/10.1097/IGC.0b013e31825736fd
  • Dupont, C., Armant, D. R., & Brenner, C. A. (2009). Epigenetics : definition , mechanisms and clinical perspective. Seminars in Reproductive, 27(5), 351–357. https://doi.org/10.1055/s-0029-1237423.
  • Eckschlager, T., Plch, J., Stiborova, M., & Hrabeta, J. (2017). Histone deacetylase inhibitors as anticancer drugs. International Journal of Molecular Sciences, 18, 1414-1439. https://doi.org/10.3390/ijms18071414
  • Fardi, M., Solali, S., & Farshdousti Hagh, M. (2018). Epigenetic mechanisms as a new approach in cancer treatment: An updated review. Genes and Diseases, 5, 304–311. https://doi.org/10.1016/j.gendis.2018.06.003
  • Finnin, M. S., Donigian, J. R., Cohen, A., Richon, V. M., Rifkind, R. A., Marks, P. A., … Pavletich, N. P. (1999). Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature, 401, 188–193. https://doi.org/10.1038/43710
  • Ganai, S. A. (2019). Different groups of HDAC inhibitors based on various classifications. Histone Deacetylase Inhibitors — Epidrugs for Neurological Disorders (pp. 33–38). Springer Singapore. https://doi.org/10.1007/978-981-13-8019-8_5
  • Gürel, Ç., Feyda Nursal, A., & Yigit, S. (2016). Epigenetik ve kanser [Epigenetics and cancer]. Turkiye Klinikleri Radiation Oncology - Special Topics, 2(1), 45–51. Retrieved from https://www.researchgate.net/publication/309357812
  • Handy, D. E., Castro, R., & Loscalzo, J. (2011). Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation, 123(19), 2145–2156. https://doi.org/10.1161/CIRCULATIONAHA.110.956839
  • Hitosugi, T., & Chen, J. (2014). Post-translational modifications and the warburg effect. Oncogene, 33, 4279–4285. https://doi.org/10.1038/onc.2013.406
  • İzmirli, M. (2013). Epigenetik mekanizmalar ve kanser tedavisinde epigenetik yaklaşımlar. Van Tıp Dergisi, 20(1), 48–51.
  • Jeannot, V., Busser, B., Vanwonterghem, L., Michallet, S., Ferroudj, S., Cokol, M., … Hurbin, A. (2016). Synergistic activity of vorinostat combined with gefitinib but not with sorafenib in mutant KRAS human non-small cell lung cancers and hepatocarcinoma. OncoTargets and Therapy, 9, 6843–6855. https://doi.org/10.2147/OTT.S117743
  • Karve, T. M., & Cheema, A. K. (2011). Small changes huge impact: The role of protein posttranslational modifications in cellular homeostasis and disease. Journal of Amino Acids, 2011, 1–13. https://doi.org/10.4061/2011/207691
  • Korkmaz, A., Manchester, L., Topal, T., Ma, S., Tan, D., & Reiter, R. (2011). Epigenetic mechanisms in human physiology and diseases. Journal of Experimental and Integrative Medicine, 1(3), 139-147. https://doi.org/10.5455/jeim.060611.rw.003
  • Küçükoğlu, K. (2013). Histonların asetilasyonu ve histon deasetilaz inhibitörleri [Acetylation of histones and histone deacetylase inhibitors: Review]. Journal of Literature Pharmacy Sciences, 2(2), 55–73. Retrieved from http://www.turkiyeklinikleri.com/journal/eczacilik-bilimleri-dergisi/2146-944X/
  • Lai, C., Bao, R., Tao, X., Wang, J., Atoyan, R., Qu, H., … Qian, C. (2010). CUDC-101 , a multitargeted inhibitor of histone deacetylase , epidermal growth factor receptor , and human epidermal growth factor receptor 2 , exerts potent anticancer activity. Cancer Research, 70(9), 3647–3657. https://doi.org/10.1158/0008-5472.CAN-09-3360
  • Mackay, H. J., Hirte, H., Colgan, T., Covens, A., MacAlpine, K., Grenci, P., … Oza, A. M. (2010). Phase II trial of the histone deacetylase inhibitor belinostat in women with platinum resistant epithelial ovarian cancer and micropapillary (LMP) ovarian tumours. European Journal of Cancer, 46, 1573–1579. https://doi.org/10.1016/j.ejca.2010.02.047
  • Mann, B. S., Johnson, J. R., Cohen, M. H., Justice, R., & Pazdur, R. (2007). FDA approval summary: vorinostat for treatment of advanced primary cutaneous T‐cell lymphoma. The Oncologist, 12(10), 1247–1252. https://doi.org/10.1634/theoncologist.12-10-1247
  • Marks, P. A., & Breslow, R. (2007). Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug. Nature Biotechnology, 25, 84–90. https://doi.org/10.1038/nbt1272
  • Marks, P. A., & Dokmanovic, M. (2005). Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opinion on Investigational Drugs, 14, 1497–1511. https://doi.org/10.1517/13543784.14.12.1497
  • Martínez-Iglesias, O., Ruiz-Llorente, L., Sánchez-Martínez, R., García, L., Zambrano, A., & Aranda, A. (2008). Histone deacetylase inhibitors: Mechanism of action and therapeutic use in cancer. Clinical and Translational Oncology, 10(7), 395–398. https://doi.org/10.1007/s12094-008-0221-x
  • Meng, F., Wang, C., Wan, W., Lu, W., Lu, W., & Luo, C. (2016). Discovery and development of small molecules targeting epigenetic enzymes with computational methods. In J. L. Medina-Franco (Eds.), Epi-Informatics: Discovery and Development of Small Molecule Epigenetic Drugs and Probes (pp. 75–112). Academic Press. https://doi.org/10.1016/B978-0-12-802808-7.00004-6
  • Meng, W., Wang, B., Mao, W., Wang, J., Zhao, Y., & Li, Q. (2019). Enhanced efficacy of histone deacetylase inhibitor panobinostat combined with dual PI3K / mTOR inhibitor BEZ235 against glioblastoma. Nagoya Journal of Medical Science, 81(1), 93–102. https://doi.org/10.18999/nagjms.81.1.93
  • Moita, A. J. R., Bandolik, J. J., Hansen, F. K., Kurz, T., Hamacher, A., & Kassack, M. U. (2020). Priming with HDAC inhibitors sensitizes ovarian cancer cells to treatment with cisplatin and hsp90 inhibitors. International Journal of Molecular Sciences, 21(21), 1–22. https://doi.org/10.3390/ijms21218300
  • Moore, D. (2016). Panobinostat ( Farydak ) a novel option for the treatment of relapsed or relapsed and refractory multiple myeloma. Pharmacy and Therapeutics, 41(5), 296–300.
  • Moosavi, A., & Ardekani, A. M. (2016). Role of epigenetics in biology and human diseases. Iranian Biomedical Journal, 20(5), 246–258. https://doi.org/10.22045/ibj.2016.01
  • Nachmias, B., Shaulov, A., Lavie, D., & Goldschmidt, N., Gural, A., Saban, R., Lebel, E., & Gatt, M. E. (2019). Romidepsin-bendamustine combination for relapsed/ refractory T cell lymphoma. Acta Haematologica, 141, 216–221. https://doi.org/10.1159/000498905
  • Ozaki, K. I., Kishikawa, F., Tanaka, M., Sakamoto, T., Tanimura, S., & Kohno, M. (2008). Histone deacetylase inhibitors enhance the chemosensitivity of tumor cells with cross-resistance to a wide range of DNA-damaging drugs. Cancer Science, 99(2), 376–384. https://doi.org/10.1111/j.1349-7006.2007.00669.x
  • Parag-sharma, K., Tasoulas, J., Musicant, A. M., Viesi, C. H., Zhu, Z., Twomey, C., … Amelio, A. L. (2021). Synergistic efficacy of combined EGFR and HDAC inhibitors overcomes tolerance to EGFR monotherapy in salivary mucoepidermoid carcinoma. Oral Oncology, 115, 105166. https://doi.org/10.1016/j.oraloncology.2020.105166
  • Park, J., Terranova-barberio, M., Zhong, A. Y., Thomas, S., & Munster, P. N. (2017). Clinical applications of histone deacetylase inhibitors. In T. O. Tollefsbol (Eds.), Handbook of Epigenetics (Second Edi) (pp. 605-621). Academic Press. http://dx.doi.org/10.1016/B978-0-12-805388-1.00040-7
  • Pontiki, E., & Hadjipavlou-Litina, D. (2012). Histone deacetylase inhibitors (HDACIs). structure-activity relationships: History and new QSAR perspectives. Medicinal Research Reviews, 32(1), 1–165.
  • Poole, R. M. (2014). Belinostat: First global approval. Drugs, 74(13), 1543–1554. https://doi.org/10.1007/s40265-014-0275-8
  • Porter, N. J., & Christianson, D. W. (2019). Structure , mechanism , and inhibition of the zinc-dependent histone deacetylases. Current Opinion in Structural Biology, 59, 9–18. https://doi.org/10.1016/j.sbi.2019.01.004
  • Raedler, B. L. A. (2016). Farydak (Panobinostat): First HDAC inhibitor approved for patients with relapsed multiple myeloma. American Health & Drug Benefits, 9, 84-87.
  • Schwartsmann, G., Schunemann. H., Gorini, C. N. F., Filho Ferreira, A. F., Garbino, C., Sabini, G., Muse, I., DiLeone, L., & Mans, D. R. (2000). A phase I trial of cisplatin plus decitabine , a new DNA-hypomethylating agent , in patients with advanced solid tumors and a follow-up early phase II evaluation in patients with inoperable non-small cell lung cancer. Investigational New Drugs, 18, 83–91. https://doi.org/10.1023/A
  • Shigematsu, N., Ueda, H., Takase, S., Tanaka, H., Yamamoto, K., & Tada, T. (1994). FR901228, a novel antitumor bicyclic depsipeptide produced by chromobacterium violaceum no. 968. II. structure determination. The Journal of Antibiotics, 47(3), 311–314. https://doi.org/10.7164/antibiotics.47.311
  • Shukla, S., & Tekwani, B. L. (2020). Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.00537
  • Stimson, L., & La Thangue, N. B. (2009). Biomarkers for predicting clinical responses to HDAC inhibitors. Cancer Letters, 280, 177–183. https://doi.org/10.1016/j.canlet.2009.03.016
  • Suraweera, A., O’Byrne, K. J., & Richard, D. J. (2018). Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Frontiers in Oncology, 8. https://doi.org/10.3389/fonc.2018.00092
  • Tan, W. W., Allred, J. B., Moreno-Aspitia, A., Northfelt, D. W., Ingle, J. N., Goetz, M. P., & Perez, E. A. (2016). Phase I study of panobinostat (LBH589) and letrozole in postmenopausal metastatic breast cancer patients. Clinical Breast Cancer, 16(2), 82–86. https://doi.org/10.1016/j.clbc.2015.11.003
  • Ueda, H., Nakajıma, H., Horı, Y., Fujıta, T., Nıshımura, M., Goro, T., & Okuhara, M. (1994). FR901228, a novel antitumor bicyclic depsipeptide produced by chromobacterium violaceum No. 968: I. taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. The Journal of Antibiotics, 47(3), 301–310.
  • Vaidya, G. N., Rana, P., Venkatesh, A., Chatterjee, D. R., Contractor, D., Satpute, D. P., … Kumar, D. (2021). Paradigm shift of “classical” HDAC inhibitors to “hybrid” HDAC inhibitors in therapeutic interventions. European Journal of Medicinal Chemistry, 209, 112844. https://doi.org/10.1016/j.ejmech.2020.112844
  • von Tresckow, B., Sayehli, C., Aulitzky, W. E., Goebeler, M. E., Schwab, M., Braz, E., … Engert, A. (2019). Phase I study of domatinostat (4SC-202), a class I histone deacetylase inhibitor in patients with advanced hematological malignancies. European Journal of Haematology, 102(2), 163–173. https://doi.org/10.1111/ejh.13188
  • Wobser, M., Weber, A., Glunz, A., Tauch, S., Seitz, K., Butelmann, T., … Houben, R. (2019). Elucidating the mechanism of action of domatinostat (4SC-202) in cutaneous T cell lymphoma cells. Journal of Hematology and Oncology, 12(1), 1–16. https://doi.org/10.1186/s13045-019-0719-4
  • Xia, C., He, Z., Cai, Y., & Liang, S. (2020). Vorinostat upregulates MICA via the PI3K / Akt pathway to enhance the ability of natural killer cells to kill tumor cells. European Journal of Pharmacology, 875(2019), 173057. https://doi.org/10.1016/j.ejphar.2020.173057
  • Xu, W. S., Parmigiani, R. B., & Marks, P. A. (2007). Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene, 26, 5541–5552. https://doi.org/10.1038/sj.onc.1210620
  • Yoo, C. B., & Jones, P. A. (2006). Epigenetic therapy of cancer: past, present and future. Nature Reviews Drug Discovery, 5, 37–50. https://doi.org/10.1038/nrd1930
  • Younes, A., Berdeja, J. G., Patel, M. R., Flinn, I., Gerecitano, J. F., Neelapu, S. S., … Akins, A. (2016). Safety , tolerability , and preliminary activity of CUDC-907 , a first-in-class , oral , dual inhibitor of HDAC and PI3K , in patients with relapsed or refractory lymphoma or multiple myeloma : an open-label , dose-escalation , phase 1 trial. Lancet Oncology, 2045(15), 1–10. https://doi.org/10.1016/S1470-2045(15)00584-7
  • Zuma, A. A., & De Souza, W. (2018). Histone deacetylases as targets for antitrypanosomal drugs. Future Science OA, 4(8). https://doi.org/10.4155/fsoa-2018-0037