Determination of diazepam in human plasma by developed and validated a high-performance liquid chromatographic ultraviolet method

Background and Aims: Diazepam is accepted as a safer drug to medicate in many serious cases, acting as an anticonvulsant, an anxiolytic and a treatment for many types of poisoning. Monitoring it is important in achieving successful treatment and reducing the risk of toxic effects. In this study, it is aimed to develop and validate a sensitive, repeatable, and reliable method based on high-performance liquid chromatographic analysis for the determination in human plasma.Methods: Separation was carried out using a reverse-phase C18 column (4.0 mm x 150 mm, 3 μm) at 30 °C. The solution was prepared with a 10 mM phosphate buffer and acetonitrile (1:1, v/v) was employed as a mobile phase at the isocratic flow with 0.5 mL/min rate. Quantification was applied at 230 nm. A solid-phase extraction method was established and optimized, which was then used in the preparation of the plasma (0.5 mL) samples to the analysis.Results: The method was found to be linear (r2= 0.9805) between 100 and 1200 ng/mL. The analysis run was ≤12 min. Intra- day and inter-day accuracy were found between -5.78 and 5.93 and precision was ≤1.82%. The limit of detection and quan- tification were calculated as 20.42 and 61.86 ng/mL, respectively. Recovery was found between the range of 95.12% and 106.83%. The method was determined to be robust according to changes in UV, mobile phase organic solvent content, mobile phase pH, column temperature, and operator.Conclusion: This simple, sensitive and reliable method is suggested for accredited-reference laboratories working on the therapeutic drug monitorization and/or overdose-toxicological quantified analysis of diazepam in human plasma.

___

  • Abou-Donia, M. B., Siracuse, B., Gupta, N., & Sobel Sokol, A. (2016). Sarin (GB, O-isopropyl methylphosphonofluoridate) neurotoxic- ity: critical review. Critical Reviews in Toxicology, 46(10), 845–875. https://doi.org/10.1080/10408444.2016.1220916
  • Bakavoli, M., & Kaykhaii, M. (2003). Quantitative determination of diazepam, nitrazepam and flunitrazepam in tablets using thin- layer chromatography-densitometry technique. Journal of Phar- maceutical and Biomedical Analysis, 31(6), 1185–1189. https://doi. org/10.1016/S0731-7085(03)00027-X
  • Bialer, M. (2007). Clinical pharmacology of parenteral use of antiepileptic drugs. 48, 46–48. https://doi.org/10.1111/j.1528- 1167.2007.01348.x
  • Borges, K. B., Freire, E. F., Martins, I., & de Siqueira, M. E. P. B. (2009). Simultaneous determination of multibenzodiazepines by HPLC/ UV: Investigation of liquid-liquid and solid-phase extractions in human plasma. Talanta, 78(1), 233–241. https://doi.org/10.1016/j. talanta.2008.11.003
  • Brieudes, V., Lardy-Fontan, S., Lalere, B., Vaslin-Reimann, S., & Budzinski, H. (2016). Validation and uncertainties evaluation of an isotope dilution-SPE-LC-MS/MS for the quantification of drug residues in surface waters. Talanta, 146, 138–147. https://doi. org/10.1016/j.talanta.2015.06.073
  • Calcaterra, N. E., & Barrow, J. C. (2014). Classics in chemical neu- roscience: diazepam (valium). ACS Chemical Neuroscience, 5(4), 253–260. https://doi.org/10.1021/cn5000056
  • Chamberlain, J. M., Okada, P., Holsti, M., Mahajan, P., Brown, K. M., Vance, C., … Baren, J. (2014). Lorazepam vs diazepam for pediat- ric status epilepticus: a randomized clinical trial. JAMA, 311(16), 1652–1660. https://doi.org/10.1001/jama.2014.2625
  • Cook, P. J., Flanagan, R., & James, I. M. (1984). Diazepam toler- ance: effect of age, regular sedation, and alcohol. British Medical Journal (Clinical Research Ed.), 289(6441), 351–353. https://doi. org/10.1136/bmj.289.6441.351
  • de Araujo, F. G., Bauerfeldt, G. F., Marques, M., & Martins, E. M. (2019). Development and validation of an analytical method for the detection and quantification of bromazepam, clonaz- epam and diazepam by UPLC-MS/MS in surface water. Bulletin of Environmental Contamination and Toxicology, 103(2), 362–366. https://doi.org/10.1007/s00128-019-02631-z
  • Faye, C., Hen, R., Guiard, B. P., Denny, C. A., Gardier, A. M., Mendez- David, I., & David, D. J. (2020). Rapid anxiolytic effects of RS67333, a serotonin type 4 receptor agonist, and diazepam, a benzodi- azepine, are mediated by projections from the prefrontal cortex to the dorsal raphe nucleus. Biological Psychiatry, 87(6), 514–525.https://doi.org/10.1016/j.biopsych.2019.08.009
  • Friedman, H., Greenblatt, D. J., Peters, G. R., Metzler, C. M., Charlton,M. D., Harmatz, J. S., … Francom, S. F. (1992). Pharmacokinetics and pharmacodynamics of oral diazepam: effect of dose, plasma concentration, and time. Clinical Pharmacology and Therapeutics, 52(2), 139–150. https://doi.org/10.1038/clpt.1992.123
  • Ghosh, P., Reddy, M. M. K., Ramteke, V. B., & Rao, B. S. (2004). Analysis and quantitation of diazepam in cream biscuits by high- performance thin-layer chromatography and its confirmation by mass spectrometry. Analytica Chimica Acta, 508(1), 31–35. https:// doi.org/10.1016/j.aca.2003.11.058
  • Gong, W., Liu, S., Xu, P., Fan, M., & Xue, M. (2015). Simultaneous Quantification of Diazepam and Dexamethasone in Plasma by High-Performance Liquid Chromatography with Tandem Mass Spectrometry and Its Application to a Pharmacokinetic Compari- son between Normoxic and Hypoxic Rats. 6901–6912. https://doi. org/10.3390/molecules20046901
  • Herman, R. J., Van Pham, J. D., & Szakacs, C. B. (1989). Disposition of lorazepam in human beings: enterohepatic recirculation and first-pass effect. Clinical Pharmacology and Therapeutics, 46(1), 18–25. https://doi.org/10.1038/clpt.1989.101
  • Henney, H. R., 3rd, Sperling, M. R., Rabinowicz, A. L., Bream, G., & Carrazana, E. J. (2014). Assessment of pharmacokinetics and tolerability of intranasal diazepam relative to rectal gel in healthy adults. Epilepsy research, 108(7), 1204–1211. https://doi. org/10.1016/j.eplepsyres.2014.04.007
  • Hughes, D. A. (2020). Acute chloroquine poisoning: A compre- hensive experimental toxicology assessment of the role of diaze- pam. British Journal of Pharmacology, 177(21), 4975–4989. https:// doi.org/10.1111/bph.15101
  • ICH, I. (2005). Q2 (R1): Validation of analytical procedures: text and methodology. International Conference on Harmonization, Geneva.
  • Kim, D. H., Cho, J. Y., Chae, S. I., Kang, B. K., An, T. G., Shim, W. S., … Lee, K. T. (2017). Development of a simple and sensitive HPLC- MS/MS method for determination of diazepam in human plasma and its application to a bioequivalence study. Translational and Clinical Pharmacology, 25(4), 173–178. https://doi.org/10.12793/ tcp.2017.25.4.173
  • McGrath, M., Hoyt, H., Pence, A., Jayakar, S. S., Zhou, X., Forman, S. A., … Raines, D. E. (2020). Competitive Antagonism of Etomidate Action by Diazepam. Anesthesiology, 133(3), 583–594. https://doi. org/10.1097/ALN.0000000000003403
  • Mercolini, L., Mandrioli, R., Amore, M., & Raggi, M. A. (2008). Sepa- ration and HPLC analysis of 15 benzodiazepines in human plas- ma. Journal of Separation Science, 31(14), 2619–2626. https://doi. org/10.1002/jssc.200800212
  • Mercolini, L., Mandrioli, R., Iannello, C., Matrisciano, F., Nicoletti, F., & Raggi, M. A. (2009). Simultaneous analysis of diazepam and its metabolites in rat plasma and brain tissue by HPLC-UV and SPE. Ta- lanta, 80(1), 279–285. https://doi.org/10.1016/j.talanta.2009.06.074
  • Miller, E. I., Wylie, F. M., & Oliver, J. S. (2008). Simultaneous detec- tion and quantification of amphetamines, diazepam and its me- tabolites, cocaine and its metabolites, and opiates in hair by LC- ESI-MS-MS using a single extraction method. Journal of Analytical Toxicology, 32(7), 457–469. https://doi.org/10.1093/jat/32.7.457
  • Montoro, J., Bartra, J., Sastre, J., Dávila, I., Ferrer, M., Mullol, J., … Vale- ro, A. (2013). H-1 antihistamines and benzodiazepines. Pharmaco- logical interaction and their impact on cerebral function. Journal of Investigational Allergology & Clinical Immunology: Official Organ of the International Association of Asthmology (INTERASMA) and Socie- dad Latinoamericana de Alergia e Inmunología, 23, 17–26.
  • Morelli, B. (1997). Determination of diazepam and otilonium bromide in pharmaceuticals by ratio-spectra derivative spec- trophotometry. Fresenius’ Journal of Analytical Chemistry, 357(8), 1179–1184. https://doi.org/10.1007/s002160050327
  • Muchohi, S. N., Ogutu, B. R., Newton, C. R. J. C., & Kokwaro, G. O.
  • (2001). High-performance liquid chromatographic determination of diazepam in plasma of children with severe malaria. Jour- nal of Chromatography B: Biomedical Sciences and Applications, 761(2), 255–259. https://doi.org/10.1016/S0378-4347(01)00284-5
  • Perry, P. J., Stambaugh, R. L., Tsuang, M. T., & Smith, R. E. (1981). Sed- ative-hypnotic tolerance testing and withdrawal comparing diaz- epam to barbiturates. Journal of Clinical Psychopharmacology, 1(5), 289–296. https://doi.org/10.1097/00004714-198109000-00004
  • Pilli, N., Narayanasamy, S., Xu, L., Chockalingam, A., Shea, K., Stew- art, S., … Matta, M. (2020). A high-throughput bioanalytical as- say to support pharmacokinetic interaction study of oxycodone and diazepam in Sprague Dawley rats. RSC Advances, 10, 886–896. https://doi.org/10.1039/C9RA05785D
  • Qin, X., Xie, H., Wang, W., He, N., Huang, S., Xu, Z., … Zhou, H. (1999). Effect of the gene dosage of on diazepam metabolism in Chinese subjects. Clinical Pharmacology & Therapeutics, 66(6), 642–646. https://doi.org/10.1053/cp.1999.v66.103379001
  • Richards, B. L., Whittle, S. L., & Buchbinder, R. (2012). Muscle re- laxants for pain management in rheumatoid arthritis. The Co- chrane Database of Systematic Reviews, 1, CD008922. https://doi. org/10.1002/14651858.CD008922.pub2
  • Rogers, J. J., Stanford, C., & Dart, R. C. (2006, March). The use of visual analog pain scales in black widow spider envenomation. Journal of Medical Toxicology, 2(1), 46–47. https://doi.org/10.1007/BF03161013
  • Taysse, L., Cal, J., Bue, J., Christin, D., Delamanche, S., & Breton, P. (2003). Comparative efficacy of diazepam and avizafone against sarin-induced neuropathology and respiratory failure in guinea pigs : influence of atropine dose. Toxicology, 188(2-3), 197–209. https://doi.org/10.1016/S0300-483X(03)00086-6
  • Tran, N. H., Hu, J., & Ong, S. L. (2013). Simultaneous determination of PPCPs, EDCs, and artificial sweeteners in environmental water samples using a single-step SPE coupled with HPLC-MS/MS and isotope dilution. Talanta, 113, 82–92. https://doi.org/10.1016/j. talanta.2013.03.072
  • Uddin, M. N., Samanidou, V. F., & Papadoyannis, I. N. (2008). Validation of SPE-HPLC determination of 1,4-benzodiazepines and metabolites in blood plasma, urine, and saliva. Journal of Separation Science, 31(21), 3704–3717. https://doi.org/10.1002/ jssc.200800342
  • Weintraub, S. J. (2017). Diazepam in the treatment of moderate to severe alcohol withdrawal. CNS Drugs, 31(2), 87–95. https://doi. org/10.1007/s40263-016-0403-y
  • Wexler, P., Peyster, A. De, Hakkinen, P. J., & Pope, C. (2005). Encyclo- pedia of toxicology. 2944,(783-784).
  • Yasui, M., Kato, A., Kanemasa, T., Murata, S., Nishitomi, K., Koike,… Abe, K. (2005). Pharmacological profiles of benzodiazepiner- gic hypnotics and correlations with receptor subtypes. Japanese Journal of Psychopharmacology, 25(3), 143–151.
  • Yuan, H., & Pawliszyn, J. (2001). Application of solid-phase micro- extraction in the determination of diazepam binding to human serum albumin. Analytical Chemistry, 73(18), 4410–4416. https:// doi.org/10.1021/ac010227s
  • Zanette, G., Manani, G., Favero, L., Stellini, E., Mazzoleni, S., Co- cilovo, F., … Facco, E. (2013). Conscious sedation with diazepam and midazolam for dental patient: priority to diazepam. Minerva Stomatologica, 62(10), 355–374.
  • Zendelovska, D., Pavlovska, K., Atanasovska, E., Gjorgjievska, K., & Petrusevska, M. (2018). High performance liquid chromatograph- ic method for direct determination of diazepam in whole blood and serum - optimization of solid-phase extraction method. Prilozi, 38(3), 89–96. https://doi.org/10.2478/prilozi-2018-0009.
  • Zhang, Y., Ouyang, K., Lipina, T. V, Wang, H., & Zhou, Q. (2019). Con- ditioned stimulus presentations alter anxiety level in fear-condi- tioned mice. Molecular Brain, 12(1), 28. https://doi.org/10.1186/s13041-019-0445-4.