Investigation of antioxidant properties, essential oil, and fatty acid composition of Onobrychis armena Boiss. & Huet

Background and Aims: In this study, Onobrcyhis armena Boiss. & Huet was screened for its antioxidant potential, fatty acids and volatile compounds.Methods: Antioxidant activities of different extracts (ethyl acetate, methanol and water) were measured using the phospho- molybdenum assay, free radical scavenging assay, β-carotene/linoleic acid method, and ferric and cupric reducing power assay. Total phenolic and flavonoid contents were also calculated spectrophotometrically.Results: GC analysis revealed that the oil was dominated by palmitic (22.67%) and linoleic (15.09%) acids. Unsaturated acids levels were higher than saturated fatty acids. The essential oil was analyzed by GC-MS system and twenty-two volatile com- pounds were identified. The identified major components were n–hexadecanoic acid, 9-12 octadecanoic acid, tetradecanoic acid and hexahydro farnesyl acetone.Conclusion: The results of this study show that O. armena can be used as an easily accessible source of natural antioxidants and unsaturated fatty acids in food and pharmaceutical industries.

___

  • Apak, R., Guclu, K., Ozyurek, M., Karademir, S.E. & Ercag, E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. International Journal Food Sciences Nutrition, 57, 292–304.
  • Alonso, A.M., Guillen, D.A., Barroso, C.G., Puertas, B. & Garcia, A. (2002). Determination of antioxidant activity of wine by products and its correlation with polyphenolic content.Journal of Agricul- ture and Food Chemistry, 50, 5832–5836.
  • Arvouet-Grand, A., Vennat, B., Pourrat, A. & Legret, P. (1994). Stan- dardisation d’un extrait de propolis et identification des princi- paux constituants. Journal de Pharmacie de Belgique, 49, 462–468.
  • Bagci, E., Bruehl, L., Özçelik, H., Aitzetmuller, K., Vural, M. & Sahin, A. (2004). Study of the fatty acid and tocochromanol patterns of some Turkish Fabaceae (Leguminosae) Plants I. Grases y Aceites, 55, 378–384.
  • Baghiani, A., Djarmouni Boumerfeg, S., Trabsa, H., Charef, N., Khen- nouf, S. & Arrar L. (2012). Xanthine oxidase inhibition and anti- oxidant effects of peaganum harmala seed extracts, European Journal of Medicinal Plants, 2(1), 42–56.
  • Bakkali, F., Averbeck, S., Averbeck, D. & Waomar, M. (2008). Biologi- cal effects of essential oils-A review, Food and Chemical Toxicol- ogy,46(2), 446–475.
  • Bhaksu, L.M. & Raju, R.R.V. (2009). Chemical composition and in vitro antimicrobial activity of essential oil of Rhynchosia heynei, an endemic medicinal plant from Eastern Ghats of India. Pharma- ceutical Biology, 47(11), 1067–1070.
  • Chanda, S., Dudhatra, S. & Kaneria, M. (2010). Antioxidative and antibacterial effects of seeds and fruit rind of nutraceutical plants belonging to the Fabaceae family. Food & Function, 1, 308–315.
  • Daferera, D.J., Ziogas, B.N. & Polissiou, M.G. (2000). GC–MS analysis of essential oils from Greek aromatic plants and their fungitoxicity on Penicillum digitatum. Journal of Agricultural and Food Chemis- try, 48, 2576–2581.
  • Erbil, N., Duzguner, V., Durmuskahya, C. & Alan, Y. (2015). Antimi- crobial and antioxidant effects of some Turkish fodder plants be- longs to Fabaceae family (Vicia villosa, Trifolium ochroleucum and Onobrychis altissima). Oriental Journal of Chemistry, 31, 53–58.
  • Godevac, D., Zdunic, G., Savikin, K., Vajs, V. & Menkovic, N. (2008). Antioxidant activity of nine Fabaceae species growing in Serbia and Montenegro. Fitoterapia, 79, 185–187.
  • Grosso, A.C., Costa, M.M., Ganco, L., Pereira, A.L., Teixeira, G., La- vado, J.M.G., Figueiredo, A.C., Barosso, J.B. & Pedro, L.G. (2007). Essential oil composition of Pterospartum tridentatum grown in Portugal. Food Chemistry, 102, 1083–1088.
  • Halliwell, B. & Gutteridge, J. (1984). Oxygen toxicity oxygen radi- cals, transitionmetals and disease. Biochemical Journal, 219, 1–14.
  • Hayet, E., Maha, M., Samia, A., Mata, M., Gros, P., Raida, H., Ali, M.M., Mohammed, A.S., Gutmann, L., Mighri, Z. & Mahjoub, A. (2008). Antimicrobial, antioxidant, and antiviral activities of Retama rae- tam (Forssk.) Webb flowers growing in Tunisia. World Journal of Microbiology and Biotechnology, 24, 2933–2940.
  • Hertog, M. G. L., Feskens, E. J. M., Hollman, P. C. H., Katan, M. B. & Kromhout, D. (1993). Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. The Lancet, 342, 1007–1011.
  • Huang, D., Ou, B. & Prior, R.L. (2005). The chemistry behind anti- oxidant capacity assays. Journal of Agricultural and Food Chemistry, 53, 1841–1856.
  • IUPAC, (1979). Standards methods for analysis of oils, fats and de- rivatives, (Paquot, C. Ed.), 6th Edn, Oxford Pergamon Press, pp. 59–66.
  • Karakoca, K., Asan-Ozusaglam, M., Cakmak, Y. S. & Teksen, M. (2015). Phenolic compounds, biological and antioxidant activi- ties of Onobrychis armena Boiss. & Huet flower and root extracts. Chiang Mai University Journal of Natural of Sciences, 42, 376–392.
  • Karamian, R. & Asadbegy, M. (2016). Antioxidant activity, total phenolic and flavonoid contents of three Onobrychis species from Iran. Journal of Pharmaceutical Sciences ,22, 112–119.
  • Kicel, A., Wolbis, M., Kalemba, D. & Wajs, A. (2010). Identification of volatile constituents in flowers and leaves of Trifolium repens L. Journal of Essential Oil Research, 22(6), 624–627.
  • Mao, Z., Fu, H. & Wan, C. (2012). Effect of temperature on fatty acid content in Vicia sativa. Journal of Consumer Protection and Food Safety, 7, 133–135.
  • Mishra, J., Yosouf, A. & Singh, R.D. (2009). Phytochemical inves- tigation and in-vitro antioxidant potential of leaves of Murraya koenigii. International Journal of Integrative Biology, 7(3), 171–174.
  • Oguwande, I.A., Walker, TM., Setzer, WN. & Essien, E. (2006). Volatile constituents from Samanae saman (Jacq.) Merr. Fabaceae. African Journal of Biotechnology, 5(20), 1890–1893.
  • Oyaizu, M. (1986). Studies on products of browning reactions: antioxidative activities of browning reaction prepared from glu- cosamine. Japanese Journal of Nutrition, 44, 307-315.
  • Orhan, I., Kartal, M., Abu-Asaker, M., Şenol, F.S., Yilmaz, G. & Şener, B. (2009). Free radical scavenging properties and phenoli char- acterization of some edible plants. Food Chemistry, 114, 276–281.
  • Orhan, I., Tosun, F., Tamer, U., Duran, A., Alan, B. & Kok, A.F. (2011). Quantification of genistein and daidzein in two endemic Geni- sta species and their antioxidant activity. Journal of the Serbian Chemical Society, 76(1), 35–42.
  • Pastor-Cavado, E., Juan, R., Pastor, J.E., Alaiz, M. & Vioque, Javier (2009). Antioxidant activity of seed polyphenols in fifteen wild Lathyrus species from South Spain. LWT.42, 705–709.
  • Pietta, P.G. (2000). Flavonoids as antioxidants(review). Journal of Natural Products,63, 1035–1042.
  • Prieto, P., Pineda, M. & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphor molybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269, 337–341.
  • Rice-Evans, C.A., Miller, N.J. & Paganga, G. (1996). Structure-antiox- idant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20, 933–956.
  • Sarikurkcu, C., Arisoy, K., Tepe, B., Cakir, A., Abali, G. & Mete, E. (2009). Studies on the antioxidant activity of essential oil and dif- ferent solvent extracts of Vitex agnus castus L. fruits from Turkey. Food and Chemical Toxicology, 47, 2479–2483.
  • Sharma, N., Bhardwaj, R., Kumar, S. & Kaur, S. (2011). Evaluation of Bauhinia variegata L. bark fractions for in vitro antioxidant poten- tial and protective effect aganist H2O2-induced oxidative damage to pBR322 DNA. African Journal of Pharmacy and Pharmacology, 5, 1494–1500.
  • Singleton, V.L. & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungsticacid reagents. Ameri- can Journal of Enology and Viticulture, 16, 144–158.
  • Slinkard, K. & Singleton, V.L. (1977). Total phenol analyses: Auto- mation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 49–55.
  • Sokmen, A., Gulluce, M., Akpulat, H.A., Daferera, D., Tepe, B., Polis- siou, M., Sokmen, M. & Sahin, F. (2004). The in vitro antimicrobial and antioxidant activities of the essential oils and methanol ex- tracts of endemic Thymus spathulifolius. Food Control, 15, 627– 634.
  • Thangadurai, D., Viswanathan, B. & Ramesh, N. (2001). Nutrition- al potential of biochemical components in Galactia longifolia Benth. (Fabaceae). Food/Nahrung, 45, 97–100.
  • Usta, C., Yildirim, A. B. & Turker, A.U. (2014). Antibacterial and anti- tumour activities of some plants grown in Turkey. Biotechnology & Biotechnological Equipment, 28, 306–315.
  • Uzun, B., Arslan, C., Karhan, M. & Toker, C. (2007). Fat and Fatty acids of White lupin (Lupinus albus L.) in comparison to sesame (Sesamum indicum L.). Food Chemistry, 102, 45–49.
  • Valentao, P., Fernandes, E., Carvalho, F., Andrade, P. B., Scabra, R. M. & Bastos, M. L. 2002. Antioxidative properties of cardoon (Cynara cardunculus L.) infusion against superoxide radical, hydroxyl radi- cal and hypochlorus acid. Journal of Agricultural and Food Chem- istry, 50, 4989–4993.
  • Wiswanathan, M.B., Thangadurai, D., Vendan, K.T. & Ramesh, N. (1999). Chemical analysis and nutritional assessment of Teramnus labialis (L.) Spreng. (Fabaceae). Plant Foods for Human Nutrition, 54, 345–352.
  • Zahin, M., Aqil, F. & Ahmad, I. (2010). Broad spectrum antimuta- genic activity of antioxidant active fraction of Punica granatum L. peel extracts. Mutation Research, 703, 99–107.
  • Zengin, G., Guler, G.O., Aktumsek, A., Ceylan, R., Picot, C.M.N. & Mahomoodally, M.F. (2015). Enzyme Inhibitory Properties, Anti- oxidant Activities, and Phytochemical Profile of Three Medicinal Plants from Turkey. Advances in Pharmacological Sciences, 1–8.