Rational design and synthesis of quinazoline derivatives

Background and Aims: Alzheimer's disease is a neurodegenerative disorder in which the death of brain cells causes memory loss and cognitive decline. It is one of the leading causes of mortality worldwide. Several different hallmarks of the disease have been reported such as low levels of acetylcholine, deposits of β-amyloid around neurons, hyperphosphorylated tau protein, oxidative stress, etc. Pharmacotherapy for this disease currently depends on using acetylcholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists. They provide only symptomatic relief and mostly targets cognitive revival. Quinazoline derivatives were recently reported as being a valuable template in the treatment of many neurodegenerative disorders. Quinazoline based compounds were declared as being potential anti AD agents. This research focuses on the synthesis of novel quinazoline derivatives 3 and 4. Methods: Novel quinazoline derivatives 3 and 4 were synthesized starting from 2-(methylamino)benzamide by consecutive steps. The structures of these compounds have been characterized using different analytical and spectral methods: TLC, GC-MS, 1H-NMR and 13C-NMR. Results: This study revealed the synthesis of the novel compounds 3 and 4 with excellent yields equalling 97% and 73.1% respectively. Conclusion: Novel quinazoline derivatives compounds 3 and 4 were obtained. These compounds might be promising lead compounds for potential poly-functional anti-Alzheimer's agents in future work.

___

  • • Abualassal, Q., Abudayeh, Z., & Husien- Al-Ali, S. H. (2019). Synthesis of a Spiro Quinazoline Compound as Potential Drug Useful in the Treatment of Alzheimer’s Disease. Pharmakeftiki Journal, 2 (31), 60-68 Retrieved from https://www.hsmc.gr/wp-content/uploads/ 2015/12/ISSUE_2_2019.pdf
  • • Ajani, O. O., Aderohunmu, D. V., Umeokoro, E. N., & Olomieja, A. O. (2016). Quinazoline Pharmacophore in Therapeutic Medicine. Bangladesh Journal of Pharmacology, 11(3), 716-733. https://doi. org/ 10.3329/bjp.v11i3.25731.
  • • Apostolova, L. G. (2016). Alzheimer Disease. Continuum (Minneap Minn), 22(2), 419–434. https://doi.org/10.1212/ CON.0000000000000307.
  • • Bekris, L. M., Yu, C. E., Bird, T. D., & Tsuang, D. W. (2010). Genetics of Alzheimer Disease. Journal of Geriatric Psychiatry and Neurology, 23(4), 213–227. https://doi.org/ 10.1177/0891988710383571.
  • • Benny, A., & Thomas, J. (2019). Essential Oils as Treatment Strategy for Alzheimer’s Disease: Current and Future Perspectives. Planta Medica, 85(03), 239–248. https://doi.org/10.1055/a-0758-0188.
  • • Darras, F. H., Wehle, S., Huang, G., Sotriffer, C. A., & Decker, M. (2014). Amine Substitution of Quinazolinones Leads to Selective Nanomolar AChE Inhibitors with ‘Inverted’Binding Mode. Bioorganic and Medicinal Chemistry, 22(17), 4867-4881. https://doi. org/10.1016/j.bmc.2014.06.045.
  • • Douchamps, V., & Mathis, C. (2017). A Second Wind for the Cholinergic System in Alzheimer’s Therapy. Behavioural Pharmacology, 28 (2 and 3-Spec Issue), 112-123. https://doi.org/ 10.1097/ FBP.0000000000000300.
  • • Hampel, H., Mesulam, M. M., Cuello, A. C., Farlow, M. R., Giacobini, E., Grossberg, G. T., Khachaturian, A. S., Vergallo, A., Cavedo, E., Snyder, P. J., & Khachaturian, Z. S. (2018). The Cholinergic System in the Pathophysiology and Treatment of Alzheimer’s Disease. Brain, 141(7), 1917–1933. https://doi.org/ 10.1093/brain/awy132.
  • • Hung, S. Y., & Fu, W. M. (2017). Drug Candidates in Clinical Trials for Alzheimer’s Disease. Journal of Biomedical Science, 24(1), 47. https://doi.org/ 10.1186/s12929-017-0355-7.
  • • Kamel M. M., Zaghary W. A., Al-Wabli R., & Anwar M. M. (2016). Synthetic Approaches and Potential Bioactivity of Different Functionalized Quinazoline and Quinazolinone Scaffolds. Egyptian Pharmaceutical Journal, 15(3), 98-131. https://doi.org/ 10.4103/1687-4315.197580.
  • • Kivimäki, M., & Singh-Manoux A. (2018). Prevention of Dementia by Targeting Risk Factors. The Lancet, 391(10130), 1574-1575. https://doi.org/ 10.1016/S0140-6736(18)30578-6.
  • • Lazo-Porras, M., Ortiz-Soriano, V., Moscoso-Porras, M., Runzer- Colmenares, FM., Málaga, G., & Jaime Miranda, J. (2017). Cognitive Impairment and Hypertension in Older Adults Living in Extreme Poverty: A Cross-Sectional Study in Peru. BMC Geriatric, 17(1), 250- . https://doi.org/10.1186/s12877-017-0628-8.
  • • Li, Z., Wang, B., Hou, J. Q., Huang, S. L., Ou, T. M., Tan, J. H., An, L. K., Li, D., Gu, L. Q., & Huang, Z. S. (2013). 2-(2-indolyl-)-4(3H)-quinazolines Derivates as New Inhibitors of AChE: Design, Synthesis, Biological Evaluation and Molecular Modelling. Journal of Enzyme Inhibition and Medicinal Chemistry , 28(3), 583-592. https://doi. org/ 10.3109/14756366.2012.663363.
  • • Mendiola-Precoma, J., Berumen L. C., Padilla, K., & Garcia-Alcocer, G. (2016). Therapies for Prevention and Treatment of Alzheimer’s Disease. BioMed Research International, 2016(3), 1-17. https://doi. org/10.1155/2016/2589276.
  • • Mohamed, T., Manna, M. K., & Rao, P. P. N. (2017). Application of Quinazoline and Pyrido[3,2-d] Pyrimidine Templates to Design Multi-Targeting Agents in Alzheimer’s Disease. RSC Advances, 7(36), 22360–22368. https://doi.org/ 10.1039/c7ra02889j.
  • • Mohamed, T., & Rao, P. P. N. (2017). 2,4-Disubstituted Quinazolines as Amyloid-β Aggregation Inhibitors with Dual Cholinesterase Inhibition and Antioxidant Properties: Development and Structure-Activity Relationship (SAR) Studies. European Journal of Medicinal Chemistry, 126, 823-843. https://doi.org/ 10.1016/j.ejmech.2016.12.005.
  • • Naderali, E. K., Ratcliffe, S. H., & Dale, M. C. (2009). Obesity and Alzheimer’s Disease: A Link Between Body Weight and Cognitive Function in Old Age American Journal of Alzheimer’s Disease and Other Dementias, 24(6), 445-449. https://doi.org/ 10.1177/1533317509348208.
  • • Olivares, D., Deshpande V. K., Shi, Y., Lahiri, D. K., Greig, N. H., Rogers, J. T., & Huang, X. (2012). N-methyl D-aspartate (NMDA) Receptor Antagonists and Memantine Treatment for Alzheimer’s Disease, Vascular Dementia and Parkinson’s Disease. Current Alzheimer Research, 9(6), 746-758. https://doi. org/10.2174/156720512801322564.
  • • Panpalli Ates, M., Karaman, Y., Guntekin, S., & Ergun, M.A. (2016). Analysis of Genetics and Risk Factors of Alzheimer’s disease. Neuroscience, 14(325), 124-131. https://doi.org/ 10.1016/j.Neuroscience. 2016.03.051.
  • • Park, B., Nam, J. H., Kim, J. H., Kim H. J., Onnis, V., Balboni, G., Lee K. T., Park, J. H., Catto, M., Carotti, A., & Lee, J. Y. (2017) . 3,4-Dihydroquinazoline Derivatives Inhibit the Activities of Cholinesterase Enzymes. Bioorganic & Medicinal Chemistry Letters, 27(5), 1179- 1185. https://doi.org/ 10.1016/j.bmcl.2017.01.068.
  • • Ravinder, B., Rajeswar, R. S., Panasa R. A., & Rakeshwar, B. (2013). Amide Activation by TMSCl: Reduction of Amides to Amines by LiAlH4 under Mild Conditions. Tetrahedron Letters, 54(36), 4908- 4913. https://doi.org/10.1016/j.tetlet.2013.06.144.
  • • Szeto, J.Y.Y., Simon J.G., & Lewis, S.J.G (2016). Current Treatment Options for Alzheimer’s Disease and Parkinson’s Disease Dementia. Current Neuropharmacology, 14(4), 326–338. https://doi.org/ 10.2174/1570159X14666151208112754
  • • Tariq, S., & Barber, P. A. (2018). Dementia Risk and Prevention by Targeting Modifiable Vascular Risk Factors. Journal of Neurochemistry, 144(5), 565-581. https://doi.org/ 10.1111/jnc.14132.
  • • Zhao, D., Wang, T., & Li, J. X. (2014). Metal-Free Oxidative Synthesis of Quinazolinones via Dual Amination of sp3 C–H Bonds. Chemical Communications, 50(49), 6471-6474. https://doi.org/10.1039/ C4CC02648A.