The inhibitory effects of plant extracts, vitamins and amino acids on myeloperoxidase activity

Background and Aims: Myeloperoxidase (MPO, EC 1.11.2.2) is a vital antimicrobial enzyme, having a crucial role in host defense. Obstructing the activity of MPO is a possible pharmacological approach for the hindrance and management of a wide array of inflammatory illnesses. Consequently, blocking the activity of MPO is a potential pharmacological strategy for prevention and treatment of a broad range of inflammatory diseases. Methods: In our study, inhibitory effects of 6 different sulfur containing plant extracts, 16 different vitamins and amino acids were studied for MPO inhibitory activities. The MPO enzyme activity was determined spectrophotometrically according to the method of Wei and Frankel. Results: Among the aqueous plant extracts, black cabbage extract having IC50=0.92±0.07 mM showed the highest inhibition. Among the vitamins and amino acids studied, the highest MPO enzyme inhibition was exhibited by ascorbic acid with IC50=0.01±0.003 and cysteine with IC50=1.09±0.73 mM. Conclusion: Based on the outcomes, it was observed that all the examined plant extracts, vitamins and amino acids inhibited MPO enzyme at certain ratios.

___

  • Bachoual, R., Talmoudi, W., Boussetta, T., Braut, F., & El-Benna, J. (2011). An aqueous pomegranate peel extract inhibits neutrophil myeloperoxidase in vitro and attenuates lung inflammation in mice. Food and Chemical Toxicology, 49, 1224–1228.
  • Begum, R., Sharma, M., Pillai, K. K., Aeri, V., & Sheliya, M. A. (2015). Inhibitory effect of Careya arborea on inflammatory biomarkers in carrageenan-induced inflammation. Pharmaceutical Biology, 53, 437–445.
  • Bensalem, S., Soubhye, J., Aldib, I., Bournine, L., Nguyen, A. T., Vanhaeverbeek, M. … Duez, P. (2014). Inhibition of myeloperoxidase activity by the alkaloids of Peganum harmala L. (Zygophyllaceae). Journal of Ethnopharmacology, 154, 361–369.
  • Bursać-Mitrović, M., Milovanović, D.R., Mitić, R., Jovanović, D., Sovrlić, M., Vasiljević, P. … Manojlović, N. (2016). Effects of Lascorbic acid and alpha-tocopherol on biochemical parameters of swimming-induced oxidative stress in serum of guinea pigs. The African Journal of Traditional, Complementary and Alternative Medicines, 13, 29–33.
  • Cadirci E., Suleyman, H., & Aksoy, H. (2007). Effects of Onosma armeniacum root extract on ethanol-induced oxidative stress in stomach tissue of rats. Chemico-Biological Interactions, 170, 40–48.
  • Castro, J. P., Ocampo, Y. C., & Franco, L. A. (2014). In vivo and in vitro anti-inflammatory activity of Cryptostegia grandiflora Roxb. ex R. Br. leaves. Biological Research, 47, 32.
  • Daugherty, A., Dunn, J. L., Rateri, D. L., & Heinecke, J. W. (1994). Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. The Journal of Clinical Investigation, 94, 437–444.
  • Farzaei, M. H., Ghasemi-Niri, S. F., Abdolghafari, A. H., Baeeri, M., Khanavi, M., Navaei-Nigjeh, M. … Rahimi, R. (2015). Biochemical and histopathological evidence on the beneficial effects of Tragopogon graminifolius in TNBS-induced colitis. Pharmaceutical Biology, 53, 429–436.
  • Forbes, L. V., Sjögren, T., Auchère, F., Jenkins, D. W., Thong, B., Laughton, D. … Kettle, A. J. (2013). Potent reversible inhibition of myeloperoxidase by aromatic hydroxamates. The Journal of Biological Chemistry, 288, 36636–36647.
  • Garai, D., Ríos-González, B. B., Furtmüller, P, G., Fukuto, J. M., Xian, M., López-Garriga, J. … Nagy P. (2017). Mechanisms of myeloperoxidase catalyzed oxidation of H2S by H2O2 or O2 to produce potent protein Cys-polysulfide-inducing species. Free Radical Biology and Medicine, 113, 551–563.
  • Garrido, G., González, D., Lemus, Y., Delporte, C., & Delgado, R. (2006). Protective effects of a standard extract of Mangifera indica L. (VIMANG ®) against mouse ear edemas and its inhibition of eicosanoid production in J774 murine macrophages. Phytomedicine, 13, 412–418.
  • Kato, Y., Nagao, A., Terao, J., & Osawa, T. (2003). Inhibition of myeloperoxidase-catalyzed tyrosylation by phenolic antioxidants in vitro. Bioscience, Biotechnology, and Biochemistry, 67, 1136–1139.
  • Kostálová, D., Misíková, E., & Gáborová, G. (2001). Polyphenol compounds from Hamamelis virginiana L. Ceska a Slovenska Farmacie, 50, 51–53.
  • Krishnan, K., Mathew, L. E., Vijayalakshmi, N. R., & Helen, A. (2014). Anti-inflammatory potential of β-amyrin, a triterpenoid isolated from Costus igneus. Inflammopharmacology, 22, 373–285.
  • Malle, E., Furtmüller, P. G., Sattler, W., & Obinger, C. (2007). Myeloperoxidase: a target for new drug development? British Journal of Pharmacology, 152, 838–854.
  • Pálinkás, Z., Furtmüller, P. G., Nagy, A., Jakopitsch, C., Pirker, K. F., Magierowski, M. … Nagy, P. (2015). Interactions of hydrogen sulfide with myeloperoxidase. British Journal of Pharmacology, 172, 1516–1532.
  • Podsędek, A. (2007). Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT-Food Science and Technology, 40, 1–11.
  • Regasini, L. O., Vellosa, J. C., Silva, D. H., Furlan, M., de Oliveira O. M., Khalil, N. M. … Bolzani, V. S. (2008). Flavonols from Pterogyne nitens and their evaluation as myeloperoxidase inhibitors. Phytochemistry, 69, 1739–1744.
  • Riedel, R., Marrassini, C., Anesini, C., & Gorzalczany, S. (2015). Antiinflammatory and antinociceptive activity of Urera aurantiaca. Phytotherapy Research, 29, 59–66.
  • Sagone Jr., A. L., Husney, R. M., Wewers, M. D., Herzyk, D. J., & Davis, W. B. (1989). Effect of dimethylthiourea on the neutrophil myeloperoxidase pathway. Journal of Applied Physiology, 67, 1056–1062.
  • Schempp, H., Hippeli, S., Weiser, D., Kelber, O., & Elstner, E. F. (2004). Comparison of the inhibition of myeloperoxidase-catalyzed hypochlorite formation in vitro and in whole blood by different plant extracts contained in a phytopharmacon treating functional dyspepsia. Arzneimittelforschung, 54, 389–395.
  • Sokmen, B. B., Tunali, S., & Yanardag, R. (2012). Effects of vitamin U (S-methyl methionine sulphonium chloride) on valproic acid induced liver injury in rats. Food and Chemical Toxicology, 50, 3562–3566.
  • Tian, R., Ding, Y., Peng, Y.Y., & Lu, N. (2017). Inhibition of myeloperoxidase- and neutrophil-mediated hypochlorous acid formation in vitro and endothelial cell injury by (-)-epigallocatechin gallate. Journal of Agricultural and Food Chemistry, 65, 3198–3203.