Chitosan films and chitosan/pectin polyelectrolyte complexes encapsulating silver sulfadiazine for wound healing

Background and Aims: The use of natural polymers as wound dressings is attracting more interest due to their favoured properties such as biodegradability and biocompatibility. With this background, chitosan films and chitosan/pectin polyelectrolyte complex films encapsulating silver sulfadiazine were fabricated as novel wound dressings. Methods: Films were fabricated, and the surface topography and the surface roughness of the films were characterised by atomic force microscopy. Swelling and hydrolytic degradation behaviours of the films were monitored, and surface chemistry analysis was carried out. Following drug release studies, release kinetics were studied to evaluate the films for drug delivery. Results: Results suggest that the characteristic crystalline structure of chitosan films disappears after complexation with pectin. Polyelectrolyte complex films were found to be more durable than chitosan films due to their improved resistance to hydrolytic degradation. No incompatibilities amongst formulation components were detected. In vitro drug release studies indicated a rapid release of the drug from chitosan films compared to polyelectrolyte complex films. Conclusion: The overall results suggest that chitosan/pectin polyelectrolyte complex films have improved properties in terms of durability compared to chitosan films. Both films could be a promising candidate for wound healing applications considering the specific needs of different types of wounds.

___

  • • Berger, J., Reist, M., Mayer, J. M., Felt, O., & Gurny, R. (2004). Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 57(1), 35–52.
  • • Bigucci, F., Luppi, B., Cerchiara, T., Sorrenti, M., Bettinetti, G., Rodriguez, L., & Zecchi, V. (2008). Chitosan/pectin polyelectrolyte complexes: selection of suitable preparative conditions for colonspecific delivery of vancomycin. European Journal of Pharmaceutical Sciences, 35(5), 435–441.
  • • Boateng, J. S., Matthews, K. H., Stevens, H. N. E., & Eccleston, G. M. (2008). Wound healing dressings and drug delivery systems: A review. Journal of Pharmaceutical Sciences, 97(8), 2892–2923. http:// dx.doi.org/10.1002/jps.21210
  • • Coimbra, P., Ferreira, P., De Sousa, H., Batista, P., Rodrigues, M., Correia, I., & Gil, M. (2011). Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications. International Journal of Biological Macromolecules, 48(1), 112–118.
  • • Dai, T., Tanaka, M., Huang, Y. Y., & Hamblin, M. R. (2011). Chitosan preparations for wounds and burns: antimicrobial and woundhealing effects. Expert Review of Anti-infective Therapy, 9(7), 857– 879. http://dx.doi.org/10.1586/eri.11.59
  • • Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings - a review. BioMedicine, 5(4), 22–22. http://dx.doi.org/10.7603/ s40681-015-0022-9
  • • Ehterami, A., Salehi, M., Farzamfar, S., Vaez, A., Samadian, H., Sahrapeyma, H. … Goodarzi, A. (2018). In vitro and in vivo study of PCL/COLL wound dressing loaded with insulin-chitosan nanoparticles on cutaneous wound healing in rats model. International Journal of Biological Macromolecules, 117, 601–609. http://dx.doi.org/10.1016/j.ijbiomac.2018.05.184
  • • England, C. G., Miller, M. C., Kuttan, A., Trent, J. O., & Frieboes, H. B. (2015). Release kinetics of paclitaxel and cisplatin from two and three layered gold nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 92, 120–129. http://dx.doi. org/10.1016/j.ejpb.2015.02.017
  • • Fajardo, A. R., Lopes, L. C., Caleare, A. O., Britta, E. A., Nakamura, C. V., Rubira, A. F., & Muniz, E. C. (2013). Silver sulfadiazine loaded chitosan/chondroitin sulfate films for a potential wound dressing application. Materials Science and Engineering: C, 33(2), 588–595. https://doi.org/10.1016/j.msec.2012.09.025
  • • Glinsky, V. V., & Raz, A. (2009). Modified citrus pectin anti-metastatic properties: one bullet, multiple targets. Carbohydrate Research, 344(14), 1788–1791. http://dx.doi.org/10.1016/j. carres.2008.08.038
  • • Gottrup, F. (2004). A specialized wound-healing center concept: importance of a multidisciplinary department structure and surgical treatment facilities in the treatment of chronic wounds. The American Journal of Surgery, 187(5, Supplement 1), S38–S43. http://dx.doi.org/10.1016/S0002-9610(03)00303-9
  • • Gouda, R., Baishya, H., & Qing, Z. (2017). Application of mathematical models in drug release kinetics of carbidopa and levodopa ER tablets. Journal of Developing Drugs, 6(02).
  • • Han, G., & Ceilley, R. (2017). Chronic Wound Healing: A Review of Current Management and Treatments. Advances in therapy, 34(3), 599–610. http://dx.doi.org/10.1007/s12325-017-0478-y
  • • Llanos, J. H. R., de Oliveira Vercik, L. C., & Vercik, A. (2015). Physical properties of chitosan films obtained after neutralization of polycation by slow drip method. Journal of Biomaterials and Nanobiotechnology, 6(04), 276.
  • • Jayakumar, R., Prabaharan, M., Kumar, P. T. S., Nair, S. V., & Tamura, H. (2011). Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances, 29(3), 322–337. http://dx.doi.org/10.1016/j.biotechadv.2011.01.005
  • • Klasen, H. J. (2000). A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns, 26(2), 131–138. http://dx.doi.org/10.1016/S0305-4179(99)00116-3
  • • Kleinbeck, K. R., Bader, R. A., & Kao, W. J. (2009). Concurrent in vitro release of silver sulfadiazine and bupivacaine from semi-interpenetrating networks for wound management. Journal of burn care & research: Official publication of the American Burn Association, 30(1), 98–104. http://dx.doi.org/10.1097/BCR.0b013e3181921ed9
  • • Lai, H. J., Kuan, C. H., Wu, H. C., Tsai, J. C., Chen, T. M., Hsieh, D. J., & Wang, T. W. (2014). Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomaterialia, 10(10), 4156–4166.
  • • Lewandowska, K., Sionkowska, A., & Grabska, S. (2015). Chitosan blends containing hyaluronic acid and collagen. Compatibility behaviour. Journal of Molecular Liquids, 212, 879–884. http:// dx.doi.org/10.1016/j.molliq.2015.10.047
  • • Maciel, V. B. V., Yoshida, C. M., & Franco, T. T. (2015). Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohydrate Polymers, 132, 537–545.
  • • Martins, J. G., Camargo, S. E., Bishop, T. T., Popat, K. C., Kipper, M. J., & Martins, A. F. (2018). Pectin-chitosan membrane scaffold imparts controlled stem cell adhesion and proliferation. Carbohydrate Polymers, 197, 47–56.
  • • Olsson, M., Järbrink, K., Divakar, U., Bajpai, R., Upton, Z., Schmidtchen, A., & Car, J. (2019). The humanistic and economic burden of chronic wounds: A systematic review. Wound Repair and Regeneration, 27(1), 114–125. http://dx.doi.org/10.1111/wrr.12683
  • • Rashidova, S. S., Milusheva, R. Y., Semenova, L., Mukhamedjanova, M. Y., Voropaeva, N., Vasilyeva, S., … Ruban, I. (2004). Characteristics of interactions in the pectin–chitosan system. Chromatographia, 59(11–12), 779–782.
  • • Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science (Oxford), 31(7), 603–632. http:// dx.doi.org/10.1016/j.progpolymsci.2006.06.001
  • • Saghazadeh, S., Rinoldi, C., Schot, M., Kashaf, S. S., Sharifi, F., Jalilian, E., … Khademhosseini, A. (2018). Drug delivery systems and materials for wound healing applications. Advanced Drug Delivery Reviews, 127, 138–166. http://dx.doi.org/10.1016/j.addr.2018.04.008
  • • Shao, W., Wu, J., Wang, S., Huang, M., Liu, X., & Zhang, R. (2017). Construction of silver sulfadiazine loaded chitosan composite sponges as potential wound dressings. Carbohydrate Polymers, 157, 1963–1970. http://dx.doi.org//10.1016/j.carbpol.2016.11.087
  • • Singh, D., & Han, S. S. (2016). 3D Printing of Scaffold for Cells Delivery: Advances in Skin Tissue Engineering. Polymers, 8(1). http:// dx.doi.org/10.3390/polym8010019
  • • Szegedi, Á., Popova, M., Yoncheva, K., Makk, J., Mihály, J., & Shestakova, P. (2014). Silver- and sulfadiazine-loaded nanostructured silica materials as potential replacement of silver sulfadiazine. Journal of Materials Chemistry B, 2(37), 6283–6292. http://dx.doi. org/10.1039/C4TB00619D
  • • Takara, E. A., Marchese, J., & Ochoa, N. A. (2015). NaOH treatment of chitosan films: Impact on macromolecular structure and film properties. Carbohydrate Polymers, 132, 25–30. http://dx.doi. org/10.1016/j.carbpol.2015.05.077
  • • Tanabe, T., Okitsu, N., Tachibana, A., & Yamauchi, K. (2002). Preparation and characterization of keratin – chitosan composite film. Biomaterials, 23(May 2001), 817–825.
  • • Ueno, H., Mori, T., & Fujinaga, T. (2001). Topical formulations and wound healing applications of chitosan. Advanced Drug Delivery Reviews, 52(2), 105–115. http://dx.doi.org/10.1016/S0169- 409X(01)00189-2
  • • Vowden, K., & Vowden, P. (2017). Wound dressings: principles and practice. Surgery (Oxford), 35(9), 489–494.
  • • White, R., & Cooper, R. (2005). Silver sulphadiazine: a review of the evidence. Wounds UK, 1(2), 51.
  • • Yaşayan, G., Karaca, G., Akgüner, Z. P., & Bal-Öztürk, A. (2020). Chitosan/ collagen composite films as wound dressings encapsulating allantoin and lidocaine hydrochloride. International Journal of Polymeric Materials and Polymeric Biomaterials. Advance online publication. https://doi.org/10.1080/00914037.2020.1740993