Matematiksel Epidemiyoloji: Pandemik A/H1N1 Gribi Vakası

İnsanlığın yüzyıllardır mücadele ettiği epidemik hastalıkların tanımlanması, modellenmesi, davranışlarının tahmin edilmesi, kontrol ve tedavi edilmesinde matematiksel ve sayısalbilimler değerli katkılarda bulunmaktadırlar. Bu çalışmada, matematiksel epidemiyoloji bir alt disiplin olarak ele alınmış, açıklayıcı bir uygulama verilmiştir. Epidemiklerin ekonomi ve iş dünyası üzerindeki etkileri ile bazı senaryolar verilmiştir. Mevcut A/H1N1 pandemiğine ilişkin bazı matematiksel modeller ve katkıları ele alınarak tartışılmıştır. Sayısal bilimcilerle sağlık bilimcileri arasındaki işbirliklerine dikkat çekilerek bir sinerji oluşturmanın önemine değinilmiştir.

Mathematical Epidemiology: Pandemic A/H1N1 Case

Mathematicians and quantitative analysts make valuable contributions to epidemics with that humanity handles during the centuries in defining, modeling, estimating the behaviour, controling and treating of epidemic diseases. In this study, it is considered mathematical epidemiology as a sub-discipline and given a descriptive application. This effort gives some impacts of epidemics on economics and business and some possible scenarios. It is discussed some mathematical models and their contributions regarding the current A/H1N1 pandemics. This paper highlightes the importance of synergy stemming from the cooperations of quantitative and health scientists. 

___

  • M.Chan, World now at the start of 2009 influenza pandemic, DSÖ başkanı tarafından statements/2009/h1n1_pandemic_phase6_20090611/en/index.html, (Erişim: 13.09.2009). bildirisi,
  • http://www.who.int/mediacentre/news/ (2009),
  • J.M. Last, (Ed). A dictionary of epidemiology, 4th ed., Oxford University Press, New York, (2001).
  • P.Tuğlacı, Tıp Sözlüğü, 8. Baskı, ABC Kitabevi, İstanbul, (1997).
  • O. Diekmann, J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, John Wiley & Sons, USA,
  • N. M. Ferguson, Mathematical prediction in infection, Medicine, Volume 37, Issue 10, Pages 507-509, (2009).
  • A. J. Valleron, Roles of Mathematical Modeling in Epidemiology, Comptes Rendus de l’Académie des Sciences - Series III - Sciences de la Vie, Volume 323, Issue 5, Pages 429-433, (2000).
  • F. Brauer, P. van den Driessche, J. Wu (Eds), Mathematical Epidemiology, Springer-Verlag, Germany, (2008).
  • M. S. Bartlett, Stochastic population models in ecology and epidemiology, volume 4 of Methuen’s Monographs on Applied Probability and Statistics. Spottiswoode, Ballantyne, London, (1960).
  • N. T. J. Bailey, The Mathematical Theory of Infectious Diseases and Its Applications. Hafner, second edition, New York, (1975).
  • R. M. Anderson ve R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, (1991).
  • D. J. Daley ve J. Gani, Epidemic modelling, an introduction, volume 15 of Cambridge: Studies in Mathematical Biology. Cambridge university press, Cambridge, (1999).
  • H. Andersson ve T. Britton, Stochastic epidemic models and their statistical analysis, volume 151 of Lecture Notes in Statistics. Springer, New York, (2000).
  • F. Brauer ve C. Castillo-Chavez, Mathematical models in population biology and epidemiology, volume 40 of Texts in Applied Mathematics, Springer, New York, (2001).
  • D. Mollison, editor. Epidemic Models: Their Structure and Relation to Data, Publications of the Newton Institute, Cambridge University Press, Cambridge, (1995).
  • C. Castillo-Chavez, with S. Blower, P. van den Driessche, D. Kirschner, and A-A. Yakubu, editors. Mathematical approaches for emerging and reemergin infectious diseases:models, methods and theory, volume 126 of The IMA Volumes in Mathematics and Its Applications. Springer, New York, (2002).
  • F. S. Roberts, Computational and Mathematical Epidemiology, Science Careers, from http://sciencecareers.sciencemag.org/career_magazine/previous_issues/articles/20 04_02_06/noDOI.13665861607928732511, (2004), (Erişim: 24.09.2009).
  • R. Larson, P.Hostetler, H. Edwards, Calculus with Analytic Geometry, 7th edition, Houghton Mifflin, USA, (2002).
  • V. M. Veliov, Optimal control of heterogeneous systems: Basic theory, Journal of Mathematical Analysis and Applications, Volume 346, Issue 1, Pages 227-242, (2008).
  • S. Blount, A. Galambosi, S. Yakowitz, Nonlinear and dynamic programming for epidemic intervention, Applied Mathematics and Computation, Volume 86, Issues 2- 3, Pages 123-136, (1997).
  • E. Massad, N. R. S. Ortega, L. Carvalho de Barros, C. J. Struchiner, Fuzzy Logic in Action: Applications in Epidemiology and Beyond, Springer, India, (2008).
  • M. L. Brandeau, F. Sainfort, W. P. Pierskalla (Eds), Operations Research and Health Care: A Handbook of Methods and Applications, Kluwer Academic Publishers, USA, [22] E. Yoldascan, B. Kurtaran, M. Koyuncu, E. Koyuncu, Modeling the Economic Impact of Pandemic Influenza: A Case Study in Turkey, Journal of Medical Systems, (2008).
  • The Avian Flu Working Group (in consultation with Departments and the Joint Bank- Fund Health Services Department), Approved by M. Allen, The Global Economic And Financial Impact Of An Avian Flu Pandemic And The Role Of The IMF, International Monetary Fund, (2006).
  • M. R. Keogh-Brown, R. D. Smith, The Economic Impact of SARS: How does the reality match the predictions?, Health Policy, Volume 88, Issue 1, Pages 110-120, (2008).
  • R. D. Smith, Responding to global infectious disease outbreaks: Lessons from SARS on the role of risk perception, communication and management, Social Science & Medicine, Volume 63, Issue 12, Pages 3113-3123, (2006).
  • Impact of Swine Flu: Could swine flu tip the world into deflation?, Oxford Economics, http://www.oef.com/Free/pdfs/swineflu(jun09).pdf, (2009), (Erişim: 20.10.2009) [27] TC. Sağlık Bakanlığı, Grip Bilgilendirme Sistemi, (2009), http://www.grip.saglik.gov.tr/UserFiles/File/influenzaveepi.pdf, (Erişim:25.10.2009)
  • K. Kumari, P. Sharma ve R. Lal, Swine flu virus H1N1: A threat to human health, Indian Journal of Microbiology, Volume 49, Number 2, (2009).
  • N. Naffakh, S. van der Werf, April 2009: an outbreak of swine-origin influenza A(H1N1) virus with evidence for human-to-human transmission, Microbes and Infection, Volume 11, Issues 8-9, Pages 725-728, (2009).
  • M. R. Sebastian, R. Lodha and S.K. Kabra, Swine Origin Influenza (Swine Flu), Indian Journal of Pediatrics, Volume 76, Number 8, (2009).
  • M. Khanna, N. Gupta, A. Gupta ve V. K. Vijayan, Influenza A (H1N1) 2009: a pandemic alarm, Journal of Biosciences, Volume 34, Number 3, (2009).
  • World Health Organization, Clinical features of severe cases of pandemic influenza,http://www.who.int/csr/disease/swineflu/notes/h1n1_clinical_features_20 091016/en/index.html, (2009), (Erişim: 20.10.2009)
  • D. A. Fitzgerald, Human swine influenza A [H1N1]: Practical advice for clinicians early in the pandemic, Paediatric Respiratory Reviews, Volume 10, Issue 3, Pages 154-158, (2009). [34] World Health Organization, Pandemic (H1N1) 2009 - (2009), http://www.who.int/csr/don/2009_10_30/en/index.html, 31.10.2009) (Erişim:
  • Centers of Disease Control and Prevention, 2009 H1N1 Flu: Situation Update, http://www.cdc.gov/h1n1flu/update.htm, (2009), (Erişim: 25.10.2009)
  • TC. Sağlık Bakanlığı, İnfluenza Pandemisinin Muhtemel Etkileri ile İlgili Senaryo, http://www.grip.saglik.gov.tr/UserFiles/File/uisenaryo.pdf, 25.10.2009) (2009), (Erişim:
  • World Health Organization, Mathematical modeling of the pandemic H1N1 2009, Weekly Epidemiological Record, No. 34, 2009, 84, www.who.int/wer, (2009), (Erişim: 15.10.2009).
  • M. F. Boni, B. H. Manh, P. Q. Thai, J. Farrar, T. T. Hien, N. T. Hien, N. Van Kinh ,P. Horby, Modelling the progression of pandemic influenza A (H1N1) in Vietnam and the opportunities for reassortment with other influenza viruses, BMC Medicine 2009, 7:43, (2009).
  • N. Khazeni, D. W. Hutton, A. M. Garber, N. Hupert, D. K. Owens, Effectiveness and Cost-Effectiveness of Vaccination Against Pandemic Influenza (H1N1) 2009, Annals of Internal Medicine, (Published online before print October 5, 2009).
  • U. C. de Silva, J. Warachit, S. Waicharoen, M. Chittaganpitch, A preliminary analysis of the epidemiology of influenza A(H1N1)v virus infection in Thailand from early outbreak data, June-July 2009, Eurosurveillance, Volume 14, Issue 31, Rapid communications, (2009).
  • Y. Yang, J. D. Sugimoto,M. E. Halloran, N. E. Basta,D. L. Chao, L. Matrajt, G. Potter, E. Kenah,I. M. Longini, Jr., The Transmissibility and Control of Pandemic Influenza A (H1N1) Virus, Science 30 October 2009:Vol. 326. no. 5953, pp. 729 – 733, (Originally published in Science Express on 10 September 2009).
  • Pandemic Influenza Outbreak Research Modelling Team (Pan-InfORM), Modelling an influenza pandemic: A guide for the perplexed, CMAJ. 2009 August 4; 181(3-4): 171–173, (Originally published on 20 July 2009).
  • S. Eisaadany, D. Krewski, A. Catford, M. Tyshenko, S. Darshan, M. Al-Zoughool, T. Oraby, W. Aspinall, Structured Expert Elicitation and its uses in Rare, and Emerging Disease Modeling and Public Health Risk Assessments, The 57th Session of the International Statistical Institute, Contributed Paper Meetings, Durban, South Africa, (2009).
  • Mathematical epidemiology, Banff International Research Station, http://www.birs.ca/birspages.php?task=displayevent&event_id=05w5003, (2005), (Erişim: 14.10.2009).
  • DIMACS 2002-2009 Special Focus on Computational and Mathematical Epidemiology, 07.html, (2006-2007), (Erişim: 14.10.2009).
  • http://dimacs.rutgers.edu/SpecialYears/2002_Epid/seminars06
  • Institute for Emerging Infections, University of Oxford, http://www.emdis.ox.ac.uk/, (2009), (Erişim: 15.10.2009).
  • Center for Infectious Disease Dynamics, The Pennsylvania State University, http://www.cidd.psu.edu/, (2009), (Erişim: 15.10.2009).