SPREY KONİ AÇISININ DİREKT ENJEKSİYONLU MOTORDA KEROSEN İÇİN YANMA VE PERFORMANS KARAKTERİSTİKLERİNE ETKİLERİ

Bu çalışma, sprey koni açılarının silindir içi yanma özellikleri üzerindeki etkilerinin kerosen kullanımı için sayısal ve deneysel yöntemlerle belirlenmesi üzerine odaklanmıştır. Bu amaçla, 3-B silindir içi yanma HAD (Hesaplamalı Akışkanlar Dinamiği) analizleri, tam yük konumunda motor karakteristiklerinin belirlenmesinde kullanılmıştır. Ayrıca motor testleri, farklı püskürtme konisi açılarına sahip enjektörler kullanılarak yapıldı. Ölçülen performans parametreleri ve sayısal sonuçlar karşılaştırıldı. Kapalı çevrim HAD analizlerinde sırasıyla; motor hızı 1300 d/dak, hava fazlalık katsayısı 1,7 ve sıkıştırma oranı 17:1 olarak sabit tutuldu. 3-B silindir içi HAD analizleri Star-CD/es-ice yazılımında kerosen kullanımı için gerçekleştirildi. HAD modeli; RNG denklemleri, k-ε türbülans modeli ve ECFM-3Z/Compression yanma modeli kullanılarak oluşturulmuştur. Kapalı çevrim çözüm aralığı; üst ölü nokta sıfır kabul edilecek şekilde, üst ölü noktadan 40 KMA önce ile üst ölü noktadan 80 KMA sonra aralığında tanımlandı. Sprey koni açıları (SKA) 5º-25º aralığında değiştirildi ve 5º’lik adımlarla bu aralıkta analizler gerçekleştirildi. Sonuçlar 20º SKA’da 5º SKA’ya göre silindir içi basıncın %15,8 yüksek olduğunu göstermektedir. İndike ortalama efektif basıncın 20º SKA’da; sırasıyla 5º SKA’ya ve 25º SKA’ya göre %4,06 ve %3,41 yüksek olduğu gözlendi. Sprey koni açısı 5º’den 20º’ya artarken silindir içi sıcaklık 1620 K’den 1720 K’e yükseldi. İndike güç 20º SKA’da; 5º SKA’ya ve 25º SKA’ya göre sırasıyla, %7,98 ve %6,72 yüksek olduğu tespit edildi. Testlerde özgül yakıt sarfiyatı 20º SKA’da 5º SKA’ya ve 25º SKA’ya göre %8,51 ve %7,33 daha düşüktür. Genel olarak 20º SKA'daki CO2 oluşumu, 5º SKA'dan %24,3 daha yüksektir. 25º SKA için NOx oluşumu 5º SKA'dan %51,2 ve 25º SKA'dan %19,2 daha düşüktür. 20º SKA'da kurum oluşumu genel olarak 5º SKA'dan %24,8 daha düşüktür. Çalışmanın sonucunda kerosen kullanımında belirtilen çalışma koşulları için optimum püskürtme konisi açısı 20º SKA olarak belirlenmiştir.

EFFECTS OF SPRAY CONE ANGLE ON COMBUSTION AND PERFORMANCE CHARACTERISTICS OF DIRECT INJECTION ENGINE FOR KEROSENE

This study focuses on the determination of the effects of spray cone angles on in-cylinder combustion characteristics for kerosene via numerical and experimental methods. For this aim, the 3-D in-cylinder combustion CFD (Computational Fluid Dynamics) analyses were employed in the determination of engine characteristics at full load position. Also, the engine tests were performed using injectors with different spray cone angles. Measured performance parameters and numerical results were compared. The closed cycle CFD analyses; the engine speed, excess air coefficient and compression ratio were kept constant at 1300 rpm, 1.7 and 17:1, respectively. The 3-D in-cylinder CFD analyses were performed in Star-CD/es-ice software for kerosene. The CFD model was built by using RNG equations, k-ε turbulence model, and ECFM-3Z/Compression combustion model. The closed cycle was defined in the range of 40 CAD before top dead center to 80 CAD after top dead center. Spray cone angle (SCA) was changed in the range of 5º-25º and analyzed in 5º steps at the intervals. The results show that the in-cylinder pressure at 20º SCA is 15.8% higher than 5º SCA. The indicated mean effective pressure at 20º SCA was observed as 4.06% and 3.41% higher than 5º SCA and 25º SCA, respectively. The temperature in-cylinder increased to 5º-20º SCA while the highest temperature rises from 1620 to 1720 K in-cylinder. The indicated power at 20º SCA was detected as 7.98% and 6.72% higher than 5º SCA and 25º SCA, respectively. The brake specific fuel consumption at tests for 20º SCA is 8.51% and 7.23% lower than 5º SCA and 25º SCA. The CO2 formation at 20º SCA is overall 24.3% higher than 5º SCA. The NOx formation for 25º SCA is higher 51.2% than 5º SCA and 19.2% lower than 25º SCA. The soot formation at 20º SCA is overall 24.8% lower than 5º SCA. As a result of the study, the optimum spray cone angle for the operating conditions specified in the kerosene usage was determined to be 20º SCA.

___

  • Agarwal A. K. and Chaudhury V. H., 2012, Spray Characteristics of Biodiesel/Blends in a High Pressure Constant Volume Spray Chamber, Exp. Therm. Fluid Sci., 42, 212-218.
  • Aleiferis P.G., Serras-Pereira J., Van Romunde Z., Caine J. and Wirth M., 2010, Mechanisms of Spray Formation and Combustion from a Multi-Hole Injector with E85 and Gasoline, Combustion and Flame, 157, 735-756.
  • Arrègle J., Pastor J. V. and Ruiz S., 1999, The Influence of Injection Parameters on Diesel Spray Characteristics, SAE Tech. Paper, No. 1999-01-0200.
  • Bai C. and Gosman A. D., 1995, Development of Methodology for Spray Impingement Simulation, SAE Tech. Paper, No. 950283.
  • Battistoni M. and Grimaldi C. N., 2012, Numerical Analysis of Injector Flow and Spray Characteristics from Diesel Injectors using Fossil and Biodiesel Fuels, Applied Energy, 97, 656-666.
  • CD-Adapco CD-Meth., 2016, Star-CD Methodology, Version 4.26.
  • CD-Adapco Star-CD, 2016, Star-CD/es-ice User Guide, Version 4.26.
  • CD-Adapco, 2016, Star Methodology for Internal Combustion Engine Applications, Version 4.26.
  • Chen P. C., Wang W. C., Roberts W. L. and Fang T., 2013, Spray and Atomization of Diesel Fuel and Its Alternatives from a Single-Hole Injector Using a Common Rail Fuel Injection System, Fuel, 103, 850-861.
  • Chen S. K. and Lefebvre A. H., 1994, Spray Cone Angles of Effervescent Atomizers, Atomization and Sprays, 4. Dec J. E., 1997, A Conceptual Model of D.I. Diesel Combustion Based on Laser-Sheet Imaging, SAE Paper, No. 970873.
  • Delacourt E., Desmet B. and Besson B., 2005, Characterisation of Very High Pressure Diesel Sprays Using Digital Imaging Techniques, Fuel, 84, 859–867.
  • Dent J. C., 1971, A Basis for the Comparison of Various Experimental Methods for Studying Spray Penetration, SAE Trans., 80, 1881–1884.
  • Desantes J. M., Payri R., Garcia J. M. and Salvador F. J., 2007, A Contribution to the Understanding of Isothermal Diesel Spray Dynamics, Fuel, 86,1093–1101.
  • Doudou A., 2005, Turbulent Flow Study of an Isothermal Diesel Spray Injected by a Common Rail System, Fuel, 84, 287–298.
  • Heywood J. B., 1988, Internal Combustion Engine Fundamentals, McGraw-Hill College.
  • Hiroyasu H. and Arai M., 1990, Structure of Fuel Sprays in Diesel Engines, SAE Paper, No. 900475.
  • Hossainpour S. and Binesh A.R., 2009, Investigation of Fuel Spray Atomization in a DI Heavy-Duty Diesel Engine and Comparison of Various Spray Breakup Models, Fuel, 88, 799-805.
  • Huh, K. Y., 1991, A Phenomenological Model of Diesel Spray Atomization, In Proc. of The International Conf. on Multiphase Flows' 91-Tsukuba, Tsukuba.
  • Hwang J. S., Ha J. S. and Na S. Y., 2003, Spray Characteristics of DME in Conditions of Common Rail Injection System (II), Int. J. Autom. Tech., 4, 119–124.
  • Juslin L., Antikainen O., Merkku P. and Yliruusi J., 1995, Droplet size measurement: I. Effect of Three Independent Variables on Droplet Size Distribution and Spray Angle from a Pneumatic Nozzle, Int. J Phar., 123, 247-256.
  • Kannaiyan K. and Sadr R., 2014, Experimental Investigation of Spray Characteristics of Alternative Aviation Fuels, Energy Conv. Management, 88, 1060-1069.
  • Kim K., Kim D., Jung Y. and Bae C., 2013, Spray and combustion characteristics of gasoline and diesel in a direct injection compression ignition engine, Fuel, 109, 616-626.
  • Kim M. Y. and Lee C. S., 2007, Effect of a Narrow Fuel Spray Angle and a Dual Injection Configuration on the Improvement of Exhaust Emissions in a HCCI Diesel Engine, Fuel, 86, 2871-2880.
  • Kostas J., Honnery D. and Soria J., 2009, Time Resolved Measurements of the Initial Stages of Fuel Spray Penetration, Fuel, 88, 2225–2237.
  • Langrish T. A . and Zbicinski I., 1994, The Effects of Air Inlet Geometry and Spray Cone Angle on The Wall Deposition Rate in Spray Dryers, Chemical Eng. Res. Des., 72, 420-430.
  • Liu J., Zhang X. Q., Li Q. L. and Wang Z. G., 2013, Effect of Geometric Parameters on the Spray Cone Angle In the Pressure Swirl Injector, Proc. Inst. Mech. Eng. Part G: J. Aerospace Eng., 227, 342-353.
  • Mahle GmbH, 2012, Pistons and Engine Testing, ATZ/MTZ-Fachbuch.
  • Mang T., Dresel W. and Wiley, J., 2007, Lubricants and Lubrication, Wiley-Vch., Weinheim, Germany.
  • Miller R., Davis G., Lavoie G., Newman C. and Gardner T., 1998, A Super-Extended Zel'dovich Mechanism for NOx Modeling and Engine Calibration, SAE Tech. Paper, No. 980781.
  • Mitroglou N., Nouri J.M., Gavaises M. and Arcoumanis C., 2006, Spray Characteristics of a Multi-Hole Injector for Direct-Injection Gasoline Engines, Int. J. Engine Research, 7, 255-270.
  • Naber J. and Siebers D. L., 1996, Effects of Gas Density and Vaporisation on Penetration and Dispersion of Diesel Sprays, SAE Paper, No. 960034.
  • Nakamura M., Nishioka D., Hayashi J. and Akamatsu F., 2011, Soot Formation, Spray Characteristics, and Structure of Jet Spray Flames Under High Pressure, Combustion and Flame, 158, 1615-1623.
  • Ohrn T. R., Senser D. W. and Lefebvre A. H., 1991, Geometric Effects on Spray Cone Angle for Plain-Orifice Atomizers, Atomization and Sprays, 1.
  • Park S. H., Kim H. J., Suh H. K. and Lee C. S., 2009, Atomization and Spray Characteristics of Bioethanol and Bioethanol Blended Gasoline Fuel Injected Through a Direct Injection Gasoline Injector, Int. J. Heat Fluid Flow, 30, 1183-1192.
  • Park S. H., Yoon S. H. and Lee C. S., 2011, Effects of Multiple-Injection Strategies on Overall Spray Behavior, Combustion, and Emissions Reduction Characteristics of Biodiesel Fuel, Applied Energy, 88, 88-98.
  • Patterson M. A. and Reitz R. D., 1998, Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission, SAE Trans., 27-43.
  • Payri R., Garcia J. M., Salvador F. J. and Gimeno J., 2005, Using Spray Momentum Flux Measurements to Understand the Influence of Diesel Nozzle Geometry on Spray Characteristics, Fuel, 84, 551–561.
  • Raju V. R. K. and Rao S. S., 2015, Effect of Fuel Injection Pressure and Spray Cone Angle in DI Diesel Engine Using CONVERGENT CFD Code, Proc. Eng., 127, 295-300.
  • Rashad M., Yong H. and Zekun Z., 2016, Effect of Geometric Parameters on Spray Characteristics of Pressure Swirl Atomizers, Int. J. Hyd. Energy, 41, 15790-15799.
  • Reitz R. D. and Diwakar R., 1986, Effect of Drop Breakup on Fuel Sprays, SAE Tech. Paper, No. 860469.
  • Roisman I. V., Araneo L. and Tropea C., 2007, Effect of Ambient Pressure on Penetration of a Diesel Spray, Int. J. Multiphase Flow, 33, 904–920.
  • Skogsberg M., Dahlander P., Lindgren R. and Denbratt I., 2005, Effects of Injector Parameters on Mixture Formation for Multi-Hole Nozzles in a Spray-Guided Gasoline DI Engine, SAE Tech. Paper, No. 2005-01-0097.
  • Sovani S. D., Chou E., Sojka P. E., Gore J. P., Eckerle W. A. and Crofts J. D., 2001, High Pressure Effervescent Atomization: Effect of Ambient Pressure on Spray Cone Angle, Fuel, 80, 427-435.
  • Suh H. K., Park S. W. and Lee C.S., 2007, Effect of Piezodriven Injection System on the Macroscopic and Microscopic Atomization Characteristics of Diesel Fuel Spray, Fuel, 86, 2833–2845.
  • Varde K. S., Popa D. M. and Varde L. K., 1984, Spray Angle and Atomization in Diesel Sprays, SAE Trans., 779-787.
  • Verhoeven D., Vanhemelryck J. L. and Baritaud T., 1998, Macroscopic and Ignition Characteristics of High Pressure Sprays of Single-Component Fuels, SAE Paper, No. 981069.
  • Von Berg E., Edelbauer W., Alajbegovic A., Tatschl R., Volmajer M., Kegl B. and Ganippa L.C., 2005, Coupled Simulations of Nozzle Flow, Primary Fuel Jet Breakup, and Spray Formation, J. Eng. Gas Turbine and Power, 127, 897-908.
  • Wakuri Y., Fujii M., Amitani T. and Tsuneya R., 1960, Studies of the Penetration of Fuel Spray in a Diesel Engine, Bull. Japan Soc. Mech. Eng., 3, 9.
  • Wang X., Huang Z., Kuti O. A., Zhang W. and Nishida K., 2010, Experimental and Analytical Study on Biodiesel and Diesel Spray Characteristics Under Ultra-High Injection Pressure, Int. J. Heat Fluid Flow, 31, 659-666.
  • Watanabe H., Suwa Y., Matsushita Y., Morozumi Y., Aoki H., Tanno S. and Miura T., 2007, Spray Combustion Simulation Including Soot and NO Formation, Energy Conv. Management, 48, 2077-2089.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ
Sayıdaki Diğer Makaleler

YOĞUNLAŞMIŞ ISINMALI VE ELMAS ALTTAŞLI GAN HEMT’LERİN ISI DAĞITMA PERFORMANSI

Mohammad AZARIFAR, Doğacan KARA, Nazlı DÖNMEZER

ISI GERİ KAZANIM EŞANJÖRLÜ ORGANİK RANKİNE ÇEVRİMİNİN PARAMETRİK ANALİZİ VE İSTATİKSEL DEĞERLENDİRMESİ

Ali BADEMLİOĞLU, Ahmet CANBOLAT, Nurettin YAMANKARADENİZ, Ömer KAYNAKLI

EGZOS SİSTEMLERİNDE DEPOZİT TESTLERİ VE DEPOZİT DOZLAMA HARİTASININ ÇIKARILMASI

İsmail SAVCI, Hande BEZCİ

EKSENEL KOMPRESÖRLER İÇİN OTOMATİK TASARIM VE ANALİZ ARACI GELİŞTİRİLMESİ

Necmettin Anıl Kündeş KÜNDEŞ, Mehmet AKSEL, Özgür BARAN

DIŞ GEÇİŞ AKIŞI REJİMİNDE KARE, SİLİNDİR VE PLAKA ISI KUYULARI İÇİN ISI TRANSFER PERFORMANSI ÜZERİNE DENEYSEL VE SAYISAL ÇALIŞMA

Aykut BARIŞ, Özgür BAYER

SPREY KONİ AÇISININ DİREKT ENJEKSİYONLU MOTORDA KEROSEN İÇİN YANMA VE PERFORMANS KARAKTERİSTİKLERİNE ETKİLERİ

Ahmet YONTAR

SİNTERLİ VE OLUKLU FİTİL YAPILARINA SAHİP TİCARİ ISI BORULARININ DOĞAL TAŞINIM ALTINDA PERFORMANSLARININ SINANMASI

Atakan ATAY, Büşra SARIARSLAN, Yiğit KUŞÇU, Samet SAYGAN, Yiğit AKKUŞ, Türker GÜRER, Barbaros ÇETİN, Zafer DURSUNKAYA

KARBON BAZLI NANOKANALLARDA SUYUN HİDRODİNAMİK KAYMA MESAFESİNIN MOLEKÜLER DİNAMİK YÖNTEMİ İLE İNCELENMESİ

Alper CELEBI, Jafar GHORBANIAN, Ali BESKOK

PİN FİN ŞEKLİ VE BÜYÜKLÜĞÜNÜN TÜRBİN KANADI FİRAR KENARINDAKİ AKIŞ VE ISI TRANSFERİNE ETKİLERİ

Tuğba TUNÇEL, Harika KAHVECİ

JEOTERMAL ISI KAYNAKLI ORGANİK RANKİNE ÇEVRİMİNİN (ORC) FARKLI ORGANİK AKIŞKANLAR İÇİN TERMODİNAMİK ANALİZİ

Canan CİMŞİT