SECOND LAW ANALYSIS OF DIFFERENT REFRIGERANTS IN A TWO STAGE VAPOR COMPRESSION CYCLE

Bu çalışmada soğutucu akışkan olarak R600 (bütan), R290 (propan), R152a (HFC) ve R141b (HCFC) kullanıldığı buhar sıkıştırmalı soğutma çevriminde, ikinci kanun analizi EES (EES-V9.172-3D) yazılım programı kullanılarak geliştirilen program yardımıyla yapılmıştır. Sistemde aşırı kızdırma ve aşırı soğutma olduğu varsayılmış ve buna göre hesaplamalar yapılmıştır. Buhar sıkıştırmalı soğutma sisteminin elemanlarında meydana gelen tersinmezlikler, farklı buharlaştırıcı ve yoğuşturucu sıcaklıklarına göre incelenmiştir. Yoğuşturucu sıcaklığı arttıkça sistem elemanlarında meydana gelen tersinmezlikler artarken buharlaştırıcı sıcaklığının arttırılması ile sistem elemanlarında meydana gelen tersinmezlikler azalmıştır. En düşük tersinmezlik değerleri çalışmada kullanılan bütün soğutucu akışkanlar için flash tank da meydana gelmiştir. Buharlaştırıcı ve yoğuşturucu sıcaklıklarının arttırılması durumunda sistemde en düşük toplam tersinmezlik değerleri R141b soğutucu akışkanı kullanılması ile meydana gelmiştir

İKİ KADEMELİ BUHAR SIKIŞTIRMALI ÇEVRİMLERDE FARKLI SOĞUTUCU AKIŞKANLARIN İKİNCİ KANUN ANALİZİ

In this study, the second law analysis has been made by means of the program developed using the software program EES (EES-V9.172-3D) in a two stage vapor-compression refrigeration cycle for the refrigerants such as R600 (butane), R290 (propane), R152a (HFC) and R141b (HCFC) as refrigerants. It has been assumed that superheating and subcooling occur in the system and the calculations have been made accordingly. Irreversibilities occurring in the components of the cycle including compressors, evaporator, condenser, expansion valve and flash tank have been examined for different evaporator and condenser temperatures. As the condenser temperatures were increased, the irreversibilities of the components increased while they decreased with the increase of evaporator temperatures. The minimum irreversibility values occurred in the flash tank for all the refrigerants under the study. Furthermore, at the increasing values of evaporator temperatures, the total irreversibility of the refrigeration system decreased, but it increased with the condenser temperature. The total lowest irreversibility values are obtained by using R141b as a refrigerant in the refrigeration system for the increasing values of the condenser and evaporator temperature

___

  • Arcaklıoglu E., Erisen A., 2002, Exergy Analysis of Refrigerants R12, R22, R502, and Their Substitutes in Vapor Compression Refrigeration System, Technology, 3-4, 55-64.
  • ASHRAE, 1993, Fundamentals Handbook, American Society of Heating Refrigerating and Air Conditioning Engineers Inc, Atlanta.
  • Bayrakci H.C., Ozgur A.E., 2009, Energy and exergy analysis of vapor compression refrigeration system using pure hydrocarbon refrigerants, International Journal of Energy Research, 33, 1070-1075.
  • Cimsit C., Ozturk, I.T., 2014, The Vapour CompressionAbsorption Two Stage Refrigeration Cycle And Its Comparison With Alternative Cycles, Journal of Thermal Science and Technology, 34, 1, 19-26.
  • Cimsit C.,Ozturk I.T., Hosoz M., 2014, Second Law Based Thermodynamic Analysis of CompressionAbsorption Cascade Refrigeration Cycles, Journal of Thermal Science and Technology, 34, 2, 9-18.
  • Dalkilic A.S., Wongwises S., 2010, A performance comparison of vapour-compression refrigeration system using various alternative refrigerants, International Communications in Heat and Mass Transfer, 37, 1340-1349.
  • Dossat R.J., 1997, Principles of Refrigeration, Prentice Hall, New Jersey.
  • Halfaoui M.W., Tahar K., Ammar B.B., 2014, Performance analysis of a two stage vapor compression refrigeration cycle offering two cold temperatures, 5 th International Renewable Energy Congress, Tunisia.
  • Han X.H., Wang Q., Zhu Z.W., Chen G.M., 2007, Cycle performance study on R-32/R-125/R-161 as alternative refrigerant to R-407C, Applied Thermal Engineering, 27, 2559–2565.
  • Heo J., Jeona M.W., Kim Y., 2010, Effects of tank vapor injection on the heating performance of an inverter-driven heat pump for cold regions, International Journal of Refrigeration. 33, 848-855.
  • Kilic B., 2012, Exergy analysis of vapor compression refrigeration cycle with two-stage and intercooler, Heat and Mass Transfer, 48-7, 1207-1217
  • Kilicarslan A., Hosoz M., 2010, Energy and irreversibility analysis of a cascade refrigeration system for various refrigerant couples, Energy Conversion and Management, 51, 2947-2954.
  • Leidenfrost W., Lee K.H., Korenic K.H., 1980, Conservation of energy estimated by second law analysis of power-consuming process, Energy, 5, 47-61.
  • Ma G.Y., Zhao H.X., 2008, Experimental study of a heat pump system with flash-tank coupled with scroll compressor, Energy Build, 40, 697-701.
  • Menlik T., Ozcan H., Arcaklioglu E., 2014, Second Law Analysis of An Environmentally Friendly R290/R600/R600a Mixture in a Water-Cooled Heat Pump Unit, Journal of Thermal Science and Technology, 34, 2, 19-28.
  • Nikolaidis C., Probert D., 1998, Exergy-method Analysis of a Two-stage Vapour Compression Refrigeration Plants Performance, Applied Energy, 60, 241-256.
  • Padmanabhan V.M.V., Palanisamy S.K., 2013, Exergy efficiency and irreversibility comparison of R22, R134a, R290 and R407C to replace R22 in an air conditioning system, Journal of Mechanical Science and Technology, 27-3, 917-926
  • Saidur R., Masjuki H.H., Jamaluddin M.Y., 2007, An application of energy and exergy analysis in residential sector in Malaysia, Energy Policy, 35, 1050-1063.
  • Shilliday J.A, Tassou S.A, Shilliday N., 2009, Comparative energy and exergy analysis of R744, R404A and R290 refrigeration cycles, International Journal of Low-Carbon Technologies, 1–8.
  • Wongwises S. Chimres N., 2005, Experimental study of hydrocarbon mixtures to replace HFC-134a in a domestic refrigerator, Energy Conversion and Management, 46, 85–100.
  • Wongwises S., Kamboon A., Orachon B., 2006, Experimental investigation of hydrocarbon mixtures to replace HFC-134a in an automotive air conditioning system, Energy Conversion and Management, 47, 1644–1659.
  • Yumrutas R., Kunduz M., Kanoglu M., 2002, Exergy analysis of vapor compression refrigeration systems, Exergy, 2, 266-272.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ