INVESTIGATION OF THE EFFECTS OF OCTANE NUMBER ON COMBUSTION CHARACTERISTICS AND ENGINE PERFORMANCE IN A HCCI ENGINE

In this study, the effects of reference fuels with different research octane numbers (RON0, RON20 and RON40) on engine performance were investigated at 40 °C intake air temperature and full load in a four cylinders HCCI engine. The operating range for the HCCI engine has been determined and the brake specific fuel consumption maps for each fuel have been created. Combustion characteristics were investigated at a constant engine speed of 1000 rpm. The heat release rate and in-cylinder pressure lambda values of λ=2.15 were obtained for the engine operating in natural-aspirated mode. As the number of octane increases, the engine load increases but the operating range decreases. The lowest BSFC values were obtained at 238.7 g/kWh for RON0, 251.3 g/kWh for RON20 and 276.6 g/kWh for RON40. It was observed that there was a delay in the start of combustion as the number of octane increased. The best CA50 value was obtained 6 °CA from aTDC with RON40 because of the slower burning than RON0 and RON20.

HCCI BİR MOTORDA OKTAN SAYISININ YANMA KARAKTERİSTİKLERİ VE MOTOR PERFORMANSI ÜZERİNE ETKİLERİNİN İNCELENMESİ

Bu çalışmada, HCCI modundaki dört silindirli bir motorda 40 °C giriş hava sıcaklığında ve tam gaz kelebeği açıklığında farklı araştırma oktan sayısına (RON0, RON20 ve RON40) sahip referans yakıtların motor performansı ve yanma karakteristikleri üzerindeki etkileri incelenmiştir. HCCI motor için çalışma aralığı belirlenmiş ve her bir yakıt için fren özgül yakıt tüketimi (FÖYT) haritaları oluşturulmuştur. Yanma karakteristikleri 1000 rpm sabit motor hızında incelenmiştir. Doğal emişli olarak çalıştırılan motorda λ=2.15 değerinde ısı yayılım oranı ve silindir içi basınç değerleri analiz edilmiştir. Oktan sayısı arttıkça motor yükünün de arttığı ancak çalışma aralığının azaldığı görülmüştür. En düşük özgül yakıt tüketimi değerleri RON0 için 238.7 g/kWh, RON20 için 251.3 g/kWh ve RON40 için 276.6 g/kWh olarak elde edilmiştir. Oktan sayısının artmasıyla yanma başlangıcında gecikme olduğu gözlenmiştir. En iyi CA50 değeri, RON0 ve RON20' ye göre daha yavaş yanma olması nedeniyle RON40 ile üst ölü noktadan 6 °KA sonra elde edilmiştir.

___

  • Agrell F., 2006, Control of HCCI by aid of Variable Valve Timings with Specialization in Usage of a Non-Linear Quasi-Static Compensation, PhD diss., KTH.
  • Aksoy F., Uyumaz A., Boz F. ve Yılmaz E., 2017, Experimental Investigation of Neutralized Waste Cooking Oil Biodiesel/Diesel Mixture and Diesel Fuel in a Diesel Engine at Different Engine Loads, International Journal of Automotive Science and Technology, 1(1), 7-15.
  • An Y., Jaasim M., Raman V., Pérez F. E. H., Im H. G. ve Johansson B., 2018, Homogeneous Charge Compression Ignition (HCCI) and Partially Premixed Combustion (PPC) in Compression Ignition Engine with Low Octane Gasoline, Energy, 158, 181-191.
  • Ansari E., Poorghasemi K., Khoshbakht Irdmousa B., Shahbakhti, M., Naber J., 2016, Efficiency and Emissions Mapping of a Light Duty Diesel - Natural Gas Engine Operating in Conventional Diesel and RCCI Modes, SAE Technical Paper, 2016-01-2309.
  • Arcoumanis C., Bae C., Crookes R. ve Kinoshita E., 2008, The Potential of di-methyl ether (DME) as an Alternative Fuel for Compression-Ignition Engines: A review, Fuel, 87(7), 1014-1030.
  • Arora J. K., 2016, Design of real-time Combustion Feedback System and Experimental Study of an RCCI Engine for Control, PhD diss., Michigan Technological University.
  • Bai J., Wang Q., He Z., Li C. ve Pan J., 2014, Study on Methane HCCI Combustion Process of Micro free-piston Power Device, Applied thermal engineering, 73(1), 1066-1075.
  • Benajes J., García A., Monsalve-Serrano J. ve Villalta D., 2018, Benefits of E85 versus Gasoline as Low Reactivity Fuel for an Automotive Diesel Engine Operating in Reactivity Controlled Compression Ignition Combustion Mode, Energy Conversion and Management, 159, 85-95.
  • Benajes J., Novella R., Pastor J. M., Hernández-López A. ve Kokjohn S. L., 2018, Computational Optimization of The Combustion System of a Heavy Duty Direct Injection Diesel Engine Operating with Dimethyl-Ether, Fuel, 218, 127-139.
  • Celikten I., Karaaslan E., Solmaz H. ve Polat S., 2015, Benzin Katkı Maddelerinin Motor Performansı ve Egzoz Emisyonlarına Etkilerinin Deneysel Olarak İncelenmesi, Isı Bilimi ve Tekniği Dergisi, 35(1), 87-95.
  • Ciniviz M., Örs İ., Kul B.S., 2017, The Effect of Adding EN (2-Ethylhexyl Nitrate) to Diesel-Ethanol Blends on Performance and Exhaust Emissions, International Journal of Automotive Science and Technology, 1(1), 16-21.
  • Chang J., Guralp O., Filipi Z., Assanis D., Kuo T. W., Najt P. ve Rask R., 2004, New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux, SAE Technical Paper, 2004-01-2996.
  • Choi Y. ve Chen J-Y., 2005, Fast Prediction of Start-of-Combustion in HCCI with Combined Artificial Neural Networks and Ignition Delay Model, Proceedings of the Combustion Institute, 30(2), 2711-2718.
  • Chun Hou Y., Cai Lu X., Lin Zu L., Bin Ji L. ve Huang Z., 2006, Effect of High-Octane Oxygenated Fuels on n-Heptane-Fueled HCCI Combustion, Energy Fuels, 20(4), 1425-1433.
  • Cinar C., Can O., Sahin F. ve Yucesu H.S., 2010, Effects of Premixed Diethyl Ether (DEE) on Combustion and Exhaust Emissions in a HCCI-DI Diesel Engine, Applied Thermal Engineering, 30(4), 360-365.
  • Cinar C., Uyumaz A., Solmaz H., Sahin F., Polat S. ve Yilmaz E., 2015, Effects of Intake Air Temperature on Combustion, Performance and Emission Characteristics of a HCCI Engine Fueled with the Blends of 20% nHeptane and 80% Isooctane Fuels, Fuel Processing Technology, 130, 275-281
  • Cinar C., Uyumaz A., Solmaz H. ve Topgul T., 2015, Effects of Valve Lift on the Combustion and Emissions of a HCCI Gasoline Engine, Energy Conversion and Management, 94, 159-168.
  • Cinar C. ve Uyumaz A., 2014, Homojen Dolgulu Sıkıştırma ile Ateşlemeli Bir Benzin Motoru için Kam Tasarımı ve İmalatı, Journal of the Faculty of Engineering & Architecture of Gazi University, 29(1), 15-22.
  • Dec J. E., 2002, A Computational Study of the Effects of Low Fuel Loading and EGR on Heat Release Rates and Combustion Limits in HCCI Engines, SAE Technical Paper, 2002-01-1309.
  • Eng, J. A., Leppard W. R. ve Sloane T. M., 2002, The Effect of POx on the Autoignition Chemistry of nHeptane and Isooctane in an HCCI Engine, SAE Technical Paper, 2002-01-2861.
  • Hamada K., Niijima S., Yoshida K., Shoji H., Shimada K. ve Shibano K., 2005, The Effects of the Compression Ratio, Equivalence Ratio and Intake Air Temperature on Ignition Timing in an HCCI Engine using DME Fuel, SAE Technical Paper, 2005-32-0002.
  • Haraldsson G., Tunestål P., Johansson B. ve Hyvönen J., 2002, HCCI Combustion Phasing in a Multi Cylinder Engine using Variable Compression Ratio, SAE Technical Paper, 2002-01-2858.
  • He B.Q., Liu M.B. ve Zhao H., 2015, Comparison of Combustion Characteristics of n-Butanol/Ethanol- Gasoline Blends in a HCCI Engine, Energy Conversion and Management, 95, 101-109.
  • Heywood J. B., 1988, Internal combustion engine fundamentals, Mcgraw-hill New York.
  • Iida M., Hayashi M., Foster D. ve Martin J., 2003, Characteristics of Homogeneous Charge Compression Ignition (HCCI) Engine Operation for Variations in Compression Ratio, Speed and Intake Temperature while using n-Butane as a Fuel, Journal of Engineering for Gas Turbines and Power, 125(2), 472-478.
  • Jacobs T. J. ve Assanis D. N., 2007, The Attainment of Premixed Compression Ignition Low Temperature Combustion in a Compression Ignition Direct Injection Engine, Proceedings of the Combustion Institute, 31(2), 2913-2920.
  • Kalghatgi G., Risberg P. ve Ångstrom H.E., 2003, A Method of Defining Ignition Quality of Fuels in HCCI Engines, SAE Technical Paper, 2003-01-1816.
  • Khaliq A., Trivedi S. K. ve Dincer I., 2011, Investigation of a Wet Ethanol Operated HCCI Engine Based on First and Second Law Analyses, Applied thermal engineering, 31(10), 1621-1629.
  • Kiplimo R., Tomita E., Kawahara N. ve Yokobe S., 2012, Effects of Spray Impingement, Injection Parameters and EGR on the Combustion and Emission Characteristics of a PCCI Diesel Engine, Applied Thermal Engineering, 37, 165-175.
  • Liu H., Yao M., Zhang B. ve Zheng Z., 2008, Effects of Inlet Pressure and Octane Numbers on Combustion and Emissions of a Homogeneous Charge Compression Ignition (HCCI) Engine, Energy Fuels, 22(4), 22072215.
  • Lu, X.C., Chen W. ve Huang Z., 2005, A Fundamental Study on the Control of the HCCI Combustion and Emissions by Fuel Design Concept Combined with Controllable EGR. Part 1. The Basic Characteristics of HCCI Combustion, Fuel, 84(9), 1074-1083.
  • Lu, X., Hou Y., Zu L. ve Huang Z., 2006, Experimental Study on the Auto-Ignition and Combustion Characteristics in the Homogeneous Charge Compression Ignition (HCCI) Combustion Operation with Ethanol/n-Heptane Blend Fuels by Port Injection, Fuel, 85(17), 2622-2631.
  • Machrafi H., Cavadias S. ve Gilbert P., 2008, An Experimental and Numerical Analysis of the HCCI AutoIgnition Process of Primary Reference Fuels, Toluene Reference Fuels and Diesel Fuel in an Engine, Varying the Engine Parameters, Fuel Processing Technology, 89(11), 1007-1016.
  • Maurya R. K. ve Avinash K. A., 2011, Experimental Study of Combustion and Emission Characteristics of Ethanol Fuelled Port Injected Homogeneous Charge Compression Ignition (HCCI) Combustion Engine, Applied Energy, 88(4), 1169-1180.
  • Megaritis, A., D. Yap ve M. Wyszynski, 2007, Effect of water blending on bioethanol HCCI combustion with forced induction and residual gas trapping, Energy, 32 (12), 2396-2400.
  • Nagareddy S., 2017, Temperature Distribution Measurement on Combustion Chamber Surface of Diesel Engine-Experimental Method, International Journal of Automotive Science and Technology, 1(3), 8-11.
  • Onishi S., Jo S. H., Shoda K., Do Jo P. ve Kato S., 1979, Active Thermo-Atmosphere Combustion (ATAC)-a New Combustion Process for Internal Combustion Engines, SAE Technical Paper, 1979-02-01.
  • Polat S., 2016, An Experimental Study on Combustion, Engine Performance and Exhaust Emissions in a HCCI Engine Fuelled with Diethyl Ether–Ethanol Fuel Blends, Fuel Processing Technology, 143, 140-150.
  • Polat S., Kannan K., Shahbakhti M., Uyumaz A. ve Yucesu H.S., 2015, An Experimental Study for the Effects of Supercharging on Performance and Combustion of an Early Direct Injection HCCI Engine, Second International Research Conference on Engineering, Science and Management, Dubai.
  • Polat S., Uyumaz A., Ipci D., Yucesu H. S., Solmaz H. ve Yilmaz E., 2015, Doğalgaz Yakıtlı HCCI Bir Motorda Hidrojen İlavesinin Yanma Karakteristikleri Üzerindeki Etkilerinin Nümerik Olarak İncelenmesi, Makine Teknolojileri Elektronik Dergisi, 12(2), 15-26.
  • Polat S., Yucesu H. S., Kannan K., Uyumaz A., Solmaz H. ve Shahbakhti M., 2017, Experimental Comparison of Different Injection Timings in an HCCI Engine Fueled with n-Heptane, International Journal of Automotive Science and Technology, 1(1), 1-6.
  • Poorghasemi K., Khoshbakhti Saray R., Ansari E., Khoshbakht Irdmousa B., Shahbakhti M. ve Naber J. D., 2017, Effect of Diesel Injection Strategies on Natural Gas/Diesel RCCI Combustion Characteristics in a Light Duty Diesel Engine, Applied Energy, 199, 430-446.
  • Reyhanian M. ve Hosseini V., 2018, Various Effects of Reformer Gas Enrichment on Natural-Gas, Iso-octane and Normal-Heptane HCCI Combustion using Artificial Inert Species Method, Energy Conversion and Management, 159, 7-19.
  • Shaver G. M., Roelle M. ve Gerdes J. C., 2004, Modeling Cycle-to-Cycle Coupling in HCCI Engines Utilizing Variable Valve Actuation, IFAC Proceedings Volumes, 37(22), 227-232.
  • Shibata G., Oyama K., Urushihara T. ve Nakano T., 2004, The Effect of Fuel Properties on Low and High Temperature Heat Release and Resulting Performance of an HCCI Engine, SAE Technical Paper, 2004-01-0553.
  • Solmaz H., 2015, Combustion, Performance and Emission Characteristics of Fusel Oil in a Spark Ignition Engine, Fuel Processing Technology, 133, 20-28.
  • Soloiu V., Moncada J. D., Gaubert R., Muiños M., Harp S., Ilie M., Zdanowicz A. ve Molina G., 2018, LTC (lowtemperature combustion) Analysis of PCCI (premixed charge compression ignition) with n-Butanol and Cotton Seed Biodiesel versus Combustion and Emissions Characteristics of Their Binary Mixtures, Renewable Energy, 123, 323-333.
  • Solouk A., Shakiba-herfeh M., Kannan K., Solmaz H., Dice P., Bidarvatan M., Kondipati N. N. T. ve Shahbakhti M., 2016, Fuel Economy Benefits of Integrating a MultiMode Low Temperature Combustion (LTC) Engine in a Series Extended Range Electric Powertrain, SAE Technical Paper, 2016-01-2361.
  • Sudheesh K. ve Mallikarjuna J. M., 2010, Diethyl Ether as an Ignition Improver for Biogas Homogeneous Charge Compression Ignition (HCCI) Operation: An Experimental Investigation, Energy 35(9), 3614-3622.
  • Uyumaz A., 2015, An Experimental Investigation into Combustion and Performance Characteristics of an HCCI Gasoline Engine Fueled with n-Heptane, Isopropanol and n-Butanol Fuel Blends at Different Inlet Air Temperatures, Energy Conversion and Management, 98, 199-207.
  • Yao M., Zheng Z., Zhang B. ve Chen Z., 2004, The Effect of PRF Fuel Octane Number on HCCI Operation, SAE Technical Paper, 2004-01-2992.
  • Yap D., Karlovsky J., Megaritis A., Wyszynski M. ve Xu H., 2005, An Investigation into Propane Homogeneous Charge Compression Ignition (HCCI) Engine Operation with Residual Gas Trapping, Fuel, 84(18), 2372-2379.
  • Yilmaz E., Solmaz H., Polat S., Uyumaz A., Sahin F. ve Salman M. S., 2014, Preparation of Diesel Emulsion using Auxiliary Emulsifier Mono Ethylene Glycol and Utilization in a Turbocharged Diesel Dngine, Energy Conversion and Management, 86, 973-980.
  • Yu L., Li Y., Li B., Liu H., Wang Z., He X. ve Shuai S.J., 2017, Comparative Study on Gasoline HCCI and DICI Combustion in High Load Range with High Compression Ratio for Passenger Cars Application, SAE International Journal of Fuels and Lubricants, 10, 2017-01-2257.
  • Zhao H., 2007, HCCI and CAI engines for the automotive industry, Elsevier.
  • Zheng Z., Xia M., Liu H., Shang R., Ma G. ve Yao M., 2018, Experimental Study on Combustion and Emissions of n-Butanol/Biodiesel under both Blended Fuel Mode and Dual Fuel RCCI mode, Fuel 226, 240-251.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ
Sayıdaki Diğer Makaleler

BORULARDA ZAMANLA PERİYODİK OLARAK DEĞİŞEN SINIR ŞARTI İLE GEÇİCİ REJİM ISI TRANSFERİ

Aziz ALTUN, Ali ATEŞ, Ulaş ATMACA, Saim KOÇAK, Şefik BİLİR

FARKLI BUHAR SIKIŞTIRMALI SOĞUTMA SİSTEMLERINDE R134a YERİNE DÜŞÜK GWP DEĞERLİ SOĞUTKANLARIN ENERJI PARAMATERELERİNİN TEORİK MUKAYESESİ

Atilla DEVECİOĞLU, Vedat ORUÇ

DIŞ DUVARLAR İÇİN YALITIM MALZEMESİ SU BUHARI DİFÜZYON DİRENCİNİN YOĞUŞMAYA OLAN ETKİSİ

Ali BADEMLİOĞLU, Ömer KAYNAKLI, Nurettin YAMANKARADENİZ

BÜTÜNLEŞİK BİNA TASARIMI PARAMETRELERİNİN SAĞLIK KURUMLARININ ENERJİ TÜKETİM PERFORMANSI VE EMİSYON ORANINA ETKİSİNİN BİNA ENERJİ MODELLEME YARDIMIYLA DEĞERLENDİRİLMESİ

Mirparham POOYANFAR, Hüseyin TOPAL

FARKLI TİPTE NANOPARÇACIKLARLA KATKILANAN A82 ORGANİK FAZ DEĞİŞTİREN MALZEMENİN TERMAL ÖZELLİKLERİNİN BELİRLENMESİ

Ümit TEMEL, Betül ÇİFTÇİ

BİYODİZEL-DİZEL YAKIT KARIŞIMLARINA ETANOL KATILMASININ PERFORMANS, YANMA VE EMİSYON KARAKTERİSTİKLERİNE ETKİLERİNİN DENEYSEL İNCELENMESİ

Murat YEŞİLYURT, Mevlüt ARSLAN, Tanzer ERYILMAZ

A COMPARATIVE ENERGETIC ANALYSIS FOR SOME LOW-GWP REFRIGERANTS AS R134a REPLACEMENTS IN VARIOUS VAPOR COMPRESSION REFRIGERATION SYSTEMS

Vedat ORUÇ, Atilla G. DEVECİOĞLU

SİLİNDİR DEVRE DIŞI BIRAKMA METODU İLE KIVILCIM-ATEŞLEMELİ BİR MOTOR SİSTEMİNDE YAKIT-VERİMLİ EGZOZ ARITMA YÖNETİMİ

Hasan BAŞARAN

INVESTIGATION OF THE EFFECTS OF OCTANE NUMBER ON COMBUSTION CHARACTERISTICS AND ENGINE PERFORMANCE IN A HCCI ENGINE

Hamit SOLMAZ, Emre YILMAZ, Çağatay NACAK, Serdar HALİS, H. Serdar YÜCESU

HALKASAL GEOMETRİYE SAHİP SİLİNDİRİK BİR DEPONUN ISI DEPOLAMA PERFORMANSININ İYİLEŞTİRİLMESİ: KANATÇIK İLAVESİ

Orhan AYDIN, Mete AVCI, M. Yusuf YAZICI, Mithat AKGUN