GÖZENEKLİ ORTAMDA DİKEY SALINIMLI HALKASAL BİR AKIŞKAN KOLONUNDAN ISI GEÇİŞİ: DENEY SONUÇLARININ TERMODİNAMİK ANALİZİ

Bu çalışmada gözenekli ortamda bulunan, salınımlı olarak dikey yönde hareket ettirilen, halkasal bir akışkan kolonunda tek fazlı veya iki fazlı habbecikli akışlı ısı geçişi sanki-sürekli durumda, teorik ve deneysel olarak incelenmiştir. Zorlanmış salınımlar suya DC motor ve piston-silindir aracılığıyla uygulanmıştır. Isı geçişi merkezdeki sabit elektrikli ısıtma elemanından salınımlı akışa olmaktadır. Tek fazlı veya iki fazlı akış rejimindeki salınımlı halkasal akıştan ısı geçişi paslanmaz çelik yün gözenekli ortam vasıtasıyla değiştirilmektedir. Tek fazlı akış bölgesinde oluşan hidrodinamik sınır tabakasının merkezdeki akışı takip edemediği için ısı geçişini iyileştirdiği tespit edilmiştir. Basitleştirilmiş bir termodinamik analiz kullanılarak salınımlı akışta habbecikli (kabarcıklı) akış kaynaması da teorik ve deneysel olarak incelenmiştir. Gözenekli ortamın sebep olduğu kanat etkileri; akıştaki sınır tabakalarının karışımı; efektif yüzey pürüzlülüğünün artışı ve habbelerin büyüklüklerinin gözenekli ortam hücre hacmiyle kısıtlı olması gibi kaynama döngüsü değişiklikleri sebebiyle kaynama başlangıcı sıcaklığının parlatılmış metal yüzey üzerindeki havuz kaynaması ve kaynamalı akışa nazaran kaydadeğer derecede düştüğü tespit edilmiştir. Çevrim ortalama Nusselt sayısı için bir korelasyon geliştirilmiş, ve korelasyonun deney sonuçları ile uyumlu olduğu görülmüştür. Kazanlar, kompakt ısı değiştiricileri, ısı boruları ve buhar jeneratörleri yapılan çalışmanın uygulama alanları içerisindedir.

HEAT TRANSFER FROM AN OSCILLATED VERTICAL ANNULAR FLUID COLUMN THROUGH A POROUS DOMAIN: A THERMODYNAMIC ANALYSIS OF THE EXPERIMENTAL RESULTS

Heat transfer in an oscillating vertical annular fluid column flowing through a porous domain in the singlephase or bubbly flow two-phase regime (sub-cooled or saturated nucleate flow boiling) are investigatedexperimentally and theoretically, in quasi-steady state conditions. Forced oscillations are applied to water via afrequency controlled dc motor and a piston-cylinder device. Heat transfer is from the stationary concentric tubularelectric heating element outer surface to the reciprocating flow. The heat transfer in an oscillating vertical annularfluid column flowing in the single phase or in the bubbly flow regime is altered by using stainless steel wool porousmedium. For the single phase region of flow, it is understood that, the effective heat transfer mechanism is enhancedand it is due to the hydrodynamic boundary layer which can not follow the core flow. Bubbly (nucleate) flow boilingin oscillating flow is also investigated experimentally and theoretically using a simplified thermodynamic analysis.The onset of boiling temperature is distinctly dropped compared to the pool and flow boiling experiments on polishedsurfaces due the finned surface effect of the steel porous domain, due to the enhanced mixing of the boundary layerflow and core flow; due to the improvement of apparent surface roughness and due to the alteration of ebullition cycle(bubbles are limited by the cell volume here). The developed correlation predicted cycle-space averaged Nusseltnumber is shown to be in good agreement with the experimental data. The present investigation has possibleapplications in moderate sized wicked heat pipes, boilers, compact heat exchangers and steam generators

___

  • Zhao, T.S. and P. Cheng, Oscillatory Heat Transfer in a Pipe Subjected to a Laminar Reciprocating Flow. Journal of Heat Transfer, 1996. 118(3): p. 592-597
  • Zhao, T. and P. Cheng, A Numerical-Solution of Laminar Forced-Convection in a Heated Pipe Subjected to a Reciprocating Flow. International Journal of Heat and Mass Transfer, 1995. 38(16): p. 3011-3022.
  • Zhao, T.S. and P. Cheng, A numerical study of laminar reciprocating flow in a pipe of finite length. Applied Scientific Research, 1998. 59(1): p. 11-25.
  • Zhang, J.G. and U.H. Kurzeg, Numerical simulation of time-dependent heat transfer in oscillating pipe flow. Journal of Thermophysics and Heat Transfer, 1991. 5(3): p. 401-406.
  • Watson, E.J., Diffusion in Oscillatory Pipe-Flow. Journal of Fluid Mechanics, 1983. 133(Aug): p. 233- 244.
  • Wang, X.W., Z.P. Wan, and Y. Tang, Heat transfer mechanism of miniature loop heat pipe with watercopper nanofluid: thermodynamics model and experimental study. Heat and Mass Transfer, 2013. 49(7): p. 1001-1007.
  • Wan, Z.P., X.W. Wang, and Y. Tang, Condenser design optimization and operation characteristics of a novel miniature loop heat pipe. Energy Conversion and Management, 2012. 64: p. 35-42
  • Xiaoguo, T. and P. Cheng, Correlations of the cycleaveraged Nusselt number in a periodically reversing pipe flow. International Communications in Heat and Mass Transfer, 1993. 20(2): p. 161-172
  • Udell, K.S., Heat transfer in porous media considering phase change and capillarity—the heat pipe effect. International Journal of Heat and Mass Transfer, 1985. 28(2): p. 485-495.
  • Sondergeld, C.H. and D. Turcotte, An experimental study of two‐phase convection in a porous medium with applications to geological problems. Journal of Geophysical Research, 1977. 82(14): p. 2045-2053.
  • Rudemiller, G.R., A fundamental study of boiling heat transfer mechanisms related to impulse drying. 1989.
  • Rannenberg, M. and H. Beer, Heat transfer by evaporation in capillary porous wire mesh structures. Letters in Heat and Mass Transfer, 1980. 7(6): p. 425- 436.
  • Ramesh, P. and K. Torrance, Stability of boiling in porous media. International journal of heat and mass transfer, 1990. 33(9): p. 1895-1908.
  • Ozdemir, M., An experimental study on an oscillating loop heat pipe consisting of three interconnected columns. Heat and Mass Transfer, 2007. 43(6): p. 527- 534.
  • Ozawa, M. and A. Kawamoto, Lumped-Parameter Modeling of Heat-Transfer Enhanced by Sinusoidal Motion of Fluid. International Journal of Heat and Mass Transfer, 1991. 34(12): p. 3083-3095.
  • Nield, D.A. and A. Bejan, Mechanics of Fluid Flow Through a Porous Medium. 2013: Springer.
  • Najjari, M. and S. Ben Nasrallah, Numerical study of boiling with mixed convection in a vertical porous layer. International Journal of Thermal Sciences, 2002. 41(10): p. 913-925.
  • Naik, A.S. and V. Dhir, Forced flow evaporative cooling of a volumetrically heated porous layer. International Journal of Heat and Mass Transfer, 1982. 25(4): p. 541- 552.
  • Lipinski, R.J., Model for boiling and dryout in particle beds.[LMFBR]. 1982, Sandia National Labs., Albuquerque, NM (USA).
  • Lin, Z.R., et al., Experimental study on effective range of miniature oscillating heat pipes. Applied Thermal Engineering, 2011. 31(5): p. 880-886.
  • Li, H. and K. Leong, Experimental and numerical study of single and two-phase flow and heat transfer in aluminum foams. International Journal of Heat and Mass Transfer, 2011. 54(23): p. 4904-4912.
  • Li, C. and G. Peterson, Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces. Journal of heat transfer, 2007. 129(11): p. 1465-1475.
  • Li, H., et al., Three-dimensional numerical simulation of fluid flow with phase change heat transfer in an asymmetrically heated porous channel. International Journal of Thermal Sciences, 2010. 49(12): p. 2363- 2375.
  • Kurzweg, U.H. and L. Dezhao, Heat-Transfer by HighFrequency Oscillations - a New Hydrodynamic Technique for Achieving Large Effective ThermalConductivities. Physics of Fluids, 1984. 27(11): p. 2624- 2627.
  • Furberg, R., Enhanced Boiling Heat Transfer on a Dendritic and Micro-Porous Copper Structure. 2011.
  • Faghri, A. Heat pipe science and technology. in Fuel and Energy Abstracts. 1995.
  • Faghri, A. and Y. Zhang, Transport phenomena in multiphase systems. 2006: Academic press.
  • Dhir, V. and I. Catton, Dryout heat fluxes for inductively heated particulate beds. Journal of Heat Transfer, 1977. 99(2): p. 250-256.
  • Dhir, V., Boiling heat transfer. Annual review of fluid mechanics, 1998. 30(1): p. 365-401.
  • Dhir, D.V.K., Boiling and two-phase flow in porous media. Annual review of heat transfer, 1994. 5(5).
  • Damronglerd, P. and Y. Zhang, Transient fluid flow and heat transfer in a porous structure with partial heating and evaporation on the upper surface. Journal of Enhanced Heat Transfer, 2006. 13(1).
  • Costello, C. and E. Redeker. Boiling heat transfer and maximum heat flux for a surface with coolant supplied by capillary wicking. in Chem. Eng. Progr. Symposium Ser. 1963.
  • Chuah, Y. and V. Carey, Boiling Heat Transfer in a Shallow Fluidized Particulate Bed. Journal of Heat Transfer, 1987. 109(1): p. 196-203.
  • Chen, Z.D. and J.J.J. Chen, A simple analysis of heat transfer near an oscillating interface. Chemical Engineering Science, 1998. 53(5): p. 947-950.
  • Chatwin, P.C., Longitudinal Dispersion of Passive Contaminant in Oscillatory Flows in Tubes. Journal of Fluid Mechanics, 1975. 71(Oct14): p. 513-527.
  • Bau, H. and K. Torrance, Low Rayleigh number thermal convection in a vertical cylinder filled with porous materials and heated from below. Journal of Heat Transfer, 1982. 104(1): p. 166-172.
  • Arslan, G. and M. Ozdemir, Correlation to predict heat transfer of an oscillating loop heat pipe consisting of three interconnected columns. Energy Conversion and Management, 2008. 49(8): p. 2337-2344.
  • Akdag, U., M. Ozdemir, and A.F. Ozguc, Heat removal from oscillating flow in a vertical annular channel. Heat and Mass Transfer, 2008. 44(4): p. 393-400.
  • Akdag, U. and A.F. Ozguc, Experimental investigation of heat transfer in oscillating annular flow. International Journal of Heat and Mass Transfer, 2009. 52(11-12): p. 2667-2672.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ
Sayıdaki Diğer Makaleler

IŞINIMLA DUVARDAN ISITMA SİSTEMLERİNDE YALITIM KALINLIĞI OPTİMİZASYONUNDA KULLANILABİLECEK YENİ BİR YÖNTEM

Eser VELİŞAN, Ali İhsan KOCA, Gürsel ÇETİN

MERKEZ DIŞI KATI İLETKEN BİR CİSİM İÇEREN DİKDÖRTGEN KAPALI BİR ORTAMDA SU BAZLI CuO NANOAKIŞKANLAR İÇİN KALDIRMA KUVVETİ ETKİLİ ISI TRANSFERİNİN NÜMERİK İNCELENMESİ

Çiğdem SUSANTEZ, Kamil KAHVECİ

FARKLI EGZOZ VALF YÜKSEKLİKLERİ İÇİN BİR SI-CAI MOTORDA METAN- HİDROJEN KARIŞIMLARININ İNCELENMESİ

Bilge ALBAYRAK ÇEPER, Emin BORLU

AKIŞ YÖNLENDİRİCİ PLAKANIN ÇIKINTILI ISI KAYNAKLARINDAN KARIŞIK KONVEKSİYONLA ISI TRANSERİNE ETKİSİ

Burak KURŞUN, Mecit SİVRİOĞLU

DÜZLEM BİR DİSKE ÇARPAN OSİLASYONLU DAİRESEL LAMİNAR JETİN SAYISAL OLARAK İNCELENMESİ

Hasmet TÜRKOĞLU, Mitra KAHROBA

PARÇACIK GÖRÜNTÜLEMELİ HIZ ÖLÇME TEKNİĞİ İÇİN DİNAMİK MASKELEME TEKNİKLERİ

F. Gökhan ERGİN

YAN DUVARLARI DALGALI EĞİK BİR KARE KAVİTE İÇİNDEKİ NANOAKIŞKANLARIN DOĞAL KONVEKSİYONU

Müslüm ARICI, Metin AKYOL, Elif BÜYÜK ÖĞÜT

GÜNEŞ ENERJİLİ SU ISITICI KOLLEKTÖRLERLE BİRLEŞTİRİLMİŞ GÜNEŞ ENERJİLİ DAMITICILARIN DENEYSEL İNCELENMESİ

Cengiz YILDIZ, Emin EL, Zeki ARGUNHAN, Gülşah ÇAKMAK

GÖZENEKLİ ORTAMDA DİKEY SALINIMLI HALKASAL BİR AKIŞKAN KOLONUNDAN ISI GEÇİŞİ: DENEY SONUÇLARININ TERMODİNAMİK ANALİZİ

Ersin SAYAR

FARKLI EGZOZ VALF YÜKSEKLİKLERİ İÇİN BİR SI-CAI MOTORDA METANHİDROJEN KARIŞIMLARININ İNCELENMESİ

Bilge ALBAYRAK ÇEPER, Emin BORLU